Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Pegg, Elise Catherine

  • Google
  • 11
  • 21
  • 43

University of Bath

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (11/11 displayed)

  • 2024Auxetic fixation devices can achieve superior pullout performances compared to standard fixation concepts3citations
  • 2023A Feasibility Study for Additively Manufactured Composite Toolingcitations
  • 2023Additively manufactured cure tools for composites manufacture2citations
  • 2017Effect of absorbed fatty acids on physical properties of ultra-high molecular weight polyethylenecitations
  • 2017Use of contrast agents on polymeric materialscitations
  • 2016Elasto-plastic Material Models Introduce Error in Finite Element Polyethylene Wear Predictionscitations
  • 2016A Python Package to Assign Material Properties of Bone to Finite Element Models from within Abaqus Softwarecitations
  • 2016An open source software tool to assign the material properties of bone for ABAQUS finite element simulations24citations
  • 2015Tibial Fracture after Unicompartmental Knee Replacement: The Importance of Surgical Cut Accuracycitations
  • 20133D positioning of ACL attachment sites during flexioncitations
  • 2013Fracture of mobile unicompartmental knee bearings14citations

Places of action

Chart of shared publication
Barnett, Elinor
1 / 1 shared
Gill, H. S.
7 / 18 shared
Fletcher, James
1 / 1 shared
Loukaides, Evripides G.
1 / 9 shared
Kratz, James
2 / 46 shared
Dhokia, Vimal
2 / 29 shared
Maes, Vincent Karel
1 / 7 shared
Valero, Maria D. R.
2 / 2 shared
Radhakrishnan, Arjun
2 / 8 shared
Valentine, Max D. A.
2 / 3 shared
Maes, Vincent K.
1 / 3 shared
Zaribaf, Parnian Hossein Zadeh
2 / 2 shared
Alotta, Gioacchino
1 / 3 shared
Barrera, Olga
1 / 3 shared
Pandit, Hemant
1 / 3 shared
Murray, David
2 / 2 shared
Alinejad, Mona
1 / 1 shared
Oconnor, Jj
1 / 1 shared
Murray, David W.
1 / 1 shared
Pandit, Hemant G.
1 / 1 shared
Oconnor, John J.
1 / 1 shared
Chart of publication period
2024
2023
2017
2016
2015
2013

Co-Authors (by relevance)

  • Barnett, Elinor
  • Gill, H. S.
  • Fletcher, James
  • Loukaides, Evripides G.
  • Kratz, James
  • Dhokia, Vimal
  • Maes, Vincent Karel
  • Valero, Maria D. R.
  • Radhakrishnan, Arjun
  • Valentine, Max D. A.
  • Maes, Vincent K.
  • Zaribaf, Parnian Hossein Zadeh
  • Alotta, Gioacchino
  • Barrera, Olga
  • Pandit, Hemant
  • Murray, David
  • Alinejad, Mona
  • Oconnor, Jj
  • Murray, David W.
  • Pandit, Hemant G.
  • Oconnor, John J.
OrganizationsLocationPeople

document

A Python Package to Assign Material Properties of Bone to Finite Element Models from within Abaqus Software

  • Gill, H. S.
  • Pegg, Elise Catherine
Abstract

<b>Introduction:</b> Using Python scripting it is possible to automate the pre-processing, solving and post-processing stages of finite element analysis using ABAQUS software.This is particularly useful when running multiple models parametrically.When the model involves a bony part, it is necessary to assign material properties based on the CT scan to represent bone heterogeneity, and unfortunately this cannot currently be done from within ABAQUS using software such as Bonemat [1].To address this issue a Python package was written called 'py_bonemat_abaqus' to assign material properties from within ABAQUS. The purpose of this study was to compare the material assignments of py_bonemat_abaqus and Bonemat, to compare the processing speed, and to describe the workflow.<br/><b>Materials &amp; Methods: </b>The software packages were compared using a CT scan of a half pelvis downloaded from the VAKHUM database, and the associated hexahedral finite element mesh of the left half pelvis.To examine different element types, the hexahedral mesh was converted to linear and quadratic tetrahedral elements by dividing each hexahedron into 5 tetrahedral elements.The equations used to convert the Hounsfield Unit (HU) values to apparent density (p<sub>app</sub>), and to convert the apparent density to elastic modulus (E) are shown in Equations 1&amp;2 [2].<br/><i>    Equation 1</i>:p<sub>app</sub> = -0.021075 + 0.000786 HU<br/><i>    Equation 2:</i> E = 2.0173 p<sub>app</sub> 2.46<br/>The time taken to analyse the models by each software was assessed using a Windows 7 PC with a 64-bit operating system, 4 CPUS, 8 GB of RAM and an Intel Core I5-3470 processor.<br/><b>Results:</b> The mean difference between the moduulus assignment made by py_bonemat_abaqus and Bonemat was -0.05 kPa (range -10.19 to 4.50 kPa, standard deviation 0.62 kPa).The Python package took a similar time to run for all element types; this was between 109 and 126 s. Bonemat software was significantly faster, and took between 5 and 20 s.Finally, the Python package was successfully used from within a Python script to perform material assignment from within ABAQUS software in a fully automated manner.<br/><b>Discussion: </b>Material assignments were almost equivalent between the two software packages, with any differences explainable by rounding effects.To put the differences into context, a difference of -0.05 kPa is 0.00000002% of the typical modulus of cortical bone (20.7 GPa), and 0.00000003% of the modulus of trabecular bone (14.8 GPa) [3].The Python package was slower to process the models, but was successfully able to assign material properties from within ABAQUS software as part of an automated script.<br/><b>References:</b> [1] Taddei, F. et al. “The material mapping strategy influences the accuracy of CT-based finite element models of bones: An evaluation against experimental measurements” (2007) Med Eng Phys 29, p973-979.[2] Anderson, A.E. et al. “Subject-Specific Finite Element Model of the Pelvis: Development, Validation and Sensitivity Studies” (2005) J Biomech Eng 127, p364-373.[3] Rho, J.Y. et al. “Young's modulus of trabecular and cortical bone material: ultrasonic and microtensile measurements.” (1993) J Biomech 26 p111-119

Topics
  • density
  • impedance spectroscopy
  • ultrasonic
  • finite element analysis
  • computed tomography scan