Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Palmroth, Marja Riitta Tuulikki

  • Google
  • 2
  • 9
  • 16

Tampere University

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (2/2 displayed)

  • 2021The effect of compaction and microbial activity on the quantity and release rate of water-soluble organic matter from bentonites16citations
  • 2006Enhancement of in situ remediation of hydrocarbon contaminated soilcitations

Places of action

Chart of shared publication
Auvinen, Hannele
1 / 1 shared
Kokko, Marika
1 / 3 shared
Maanoja, Susanna
1 / 2 shared
Lakaniemi, Aino-Maija
1 / 3 shared
Muuri, Eveliina
1 / 2 shared
Rintala, Jukka
1 / 1 shared
Kiczka, Mirjam
1 / 1 shared
Salminen, Linda
1 / 5 shared
Lehtinen, Leena
1 / 1 shared
Chart of publication period
2021
2006

Co-Authors (by relevance)

  • Auvinen, Hannele
  • Kokko, Marika
  • Maanoja, Susanna
  • Lakaniemi, Aino-Maija
  • Muuri, Eveliina
  • Rintala, Jukka
  • Kiczka, Mirjam
  • Salminen, Linda
  • Lehtinen, Leena
OrganizationsLocationPeople

thesis

Enhancement of in situ remediation of hydrocarbon contaminated soil

  • Palmroth, Marja Riitta Tuulikki
Abstract

Approximately 750 000 sites of contaminated land exist across Europe. The harmful chemicals found in Finnish soils include heavy metals, oil products, polyaromatic hydrocarbons (PAHs), polychlorinated biphenyls (PCBs), chlorophenols, and pesticides. Petroleum and petroleum products enter soil from ruptured oil pipelines, land disposal of refinery products, leaking storage tanks and through accidents. PAH contamination is caused by the spills of coal tar and creosote from coal gasification and wood treatment sites in addition to oil spills. Cleanup of soil by bioremediation is cheaper than by chemical and physical processes. However, the cleaning capacity of natural attenuation and in situ bioremediation is limited. The purpose of this thesis was to find feasible options to enhance in situ remediation of hydrocarbon contaminants. The aims were to increase the bioavailability of the contaminants and microbial activity at the subsurface in order to achieve higher contaminant removal efficiency than by intrinsic biodegradation alone. Enhancement of microbial activity and decrease of soil toxicity during remediation were estimated by using several biological assays. The performance of these assays was compared in order to find suitable indicators to follow the progress of remediation.Phytoremediation and chemical oxidation are promising in situ techniques to increase the degradation of hydrocarbons in soil. Phytoremediation is plant-enhanced decontamination of soil and water. Degradation of hydrocarbons is enhanced in the root zone by increased microbial activity and through the detoxifying enzymes of plants themselves. Chemical oxidation of contaminants by Fenton s reaction can produce degradation products which are more biodegradable than the parent compounds. Fenton s reaction and its modifications apply solutions of hydrogen peroxide and iron for the oxidation of organic chemicals. The cost of oxidation can be reduced by aiming at partial instead of full oxidation of contaminants and by integrating the process to biological treatment, in which the formed degradation products can be biodegraded.Phytoremediation was used to remove fresh and aged petroleum hydrocarbons from soil, and modified Fenton s reaction combined with biodegradation was used to remove aged creosote oil from soil. The effects of hydrocarbon aging, different plant species and soil amendments on the removal efficiency were studied in phytoremediation experiments. Lab-scale experiments were made with fresh diesel fuel, and a field study was made with aged hydrocarbons deriving from diesel fuel and lubricants. The used plant species were pine, poplar, a grass mixture and a legume mixture. The experiments with modified Fenton s treatment were carried out in soil columns, to which concentrated H2O2 was added simulating in situ injection. Iron was not added since the soil was rich in iron. After Fenton s treatment, the soil was incubated in serum bottles to determine the effects on bioavailability of PAHs by modified Fenton s oxidation and to simulate the potential of intrinsic remediation. In addition to hydrocarbon analyses, the effects of both methods on soil microbial activities and toxicity were determined.In the presence of white clover and green pea, pine or poplar, 89 to 98 % of diesel fuel was removed, whereas the presence of grasses did not increase diesel fuel removal compared to treatment without plants, where up to 86 % of diesel fuel was removed. When diesel was applied to the trees for a second time, reduction in one month was 9 to 25 % higher than what was achieved after first month of first application. During the four growing season study with soil contaminated with aged hydrocarbon contaminants, the presence of vegetation did not increase hydrocarbon removal in unfertilised soil. Vegetation cover was denser in amended soil than in unfertilised soil. The addition of compost or NPK fertiliser enhanced hydrocarbon removal. However, the toxicity of aged hydrocarbon contaminated soil to Vibrio fischeri (a luminescent bacterium) and Enchytraeus albidus (enchytraeid) was low, and thus these toxicity indicators do not reliably reflect the progress of remediation of this aged hydrocarbon contaminated soil. The utilisation of carbon sources, as measured using Biolog®-plates, was influenced by the type of vegetation and the additions of hydrocarbons, but the latter did not result in permanent changes of carbon source utilisation patterns. Multiwell plate method to follow the utilisation of volatile diesel fuel by soil bacteria showed that presence of trees enhanced diesel fuel utilisation. Microbes in aged hydrocarbon contaminated soil utilised diesel fuel as a carbon source, although the soil did not contain volatile hydrocarbons. The activities of extracellular hydrolytic enzymes did not correlate with hydrocarbon removals.Chemical oxidation removed more PAHs (up to 50 %) than incubation of aged creosote contaminated soi...

Topics
  • impedance spectroscopy
  • compound
  • Carbon
  • experiment
  • Hydrogen
  • iron
  • aging
  • wood
  • toxicity
  • aging
  • gasification