Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Gill, H. S.

  • Google
  • 18
  • 36
  • 96

University of Bath

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (18/18 displayed)

  • 2024Experiments and numerical modelling of secondary flows of blood and shear-thinning blood analogue fluids in rotating domains2citations
  • 2024Auxetic fixation devices can achieve superior pullout performances compared to standard fixation concepts3citations
  • 2021Properties of PMMA end cap holders affect FE stiffness predictions of vertebral specimenscitations
  • 20213D Printed Medical Grade Ti-6Al-4V Osteosynthesis Devices Meet the Requirements for Tensile Strength, Bending, Fatigue and Biocompatibilitycitations
  • 2019Evaluating strength of 3D printed screw threads for patient-specific osteosynthesis platescitations
  • 2019Evaluation of optimised cervical spine viscoelastic elements for sport injury analysiscitations
  • 2018The effect of plate design, bridging span, and fracture healing on the performance of high tibial osteotomy plates – an experimental and finite element study.39citations
  • 2017Validated cemented socket model for optimising acetabular fixationcitations
  • 2017Effect of absorbed fatty acids on physical properties of ultra-high molecular weight polyethylenecitations
  • 2017Use of contrast agents on polymeric materialscitations
  • 2016A Python Package to Assign Material Properties of Bone to Finite Element Models from within Abaqus Softwarecitations
  • 2016An open source software tool to assign the material properties of bone for ABAQUS finite element simulations24citations
  • 2016A validated specimen specific finite element model of vertebral body failurecitations
  • 2016Variations in Cortical Thickness of Composite Femur Test Specimenscitations
  • 2015Tibial Fracture after Unicompartmental Knee Replacement: The Importance of Surgical Cut Accuracycitations
  • 2014Classification of retinal ganglion cells in the southern hemisphere lamprey Geotria australis (Cyclostomata)14citations
  • 2014Effect of Q-switched laser surface texturing of titanium on osteoblast cell responsecitations
  • 2013Fracture of mobile unicompartmental knee bearings14citations

Places of action

Chart of shared publication
Kelly, Nathaniel
1 / 1 shared
Fraser, Katharine
1 / 1 shared
Cookson, Andrew
1 / 1 shared
Barnett, Elinor
1 / 1 shared
Fletcher, James
1 / 1 shared
Loukaides, Evripides G.
1 / 9 shared
Pegg, Elise Catherine
7 / 11 shared
Hernandez, Bruno Agostinho
1 / 1 shared
Gheduzzi, Sabina
3 / 8 shared
Macleod, Alisdair
4 / 4 shared
Taylor, Ryan
2 / 2 shared
Casonato, Alberto
2 / 2 shared
Patterson, Michael
1 / 3 shared
Harris, Alex
1 / 1 shared
Cazzola, Dario
1 / 1 shared
Preatoni, Ezio
1 / 2 shared
Fregly, Benjamin J.
1 / 1 shared
Serrancoli, Gil
1 / 1 shared
Toms, Andrew
1 / 1 shared
Gosiewski, Jan
1 / 1 shared
Zaribaf, Parnian Hossein Zadeh
2 / 2 shared
Mahmoodi, P.
1 / 1 shared
Sleeman, J.
1 / 1 shared
Hernandez, B. A.
1 / 1 shared
Pandit, Hemant
1 / 3 shared
Murray, David
1 / 2 shared
Coimbra, Joao
1 / 1 shared
Fletcher, Lee
1 / 1 shared
Potter, I. C.
1 / 1 shared
Collin, Shaun
1 / 1 shared
Scotchford, C. A.
1 / 5 shared
Voisey, K. T.
1 / 9 shared
Martin, L.
1 / 15 shared
Murray, David W.
1 / 1 shared
Pandit, Hemant G.
1 / 1 shared
Oconnor, John J.
1 / 1 shared
Chart of publication period
2024
2021
2019
2018
2017
2016
2015
2014
2013

Co-Authors (by relevance)

  • Kelly, Nathaniel
  • Fraser, Katharine
  • Cookson, Andrew
  • Barnett, Elinor
  • Fletcher, James
  • Loukaides, Evripides G.
  • Pegg, Elise Catherine
  • Hernandez, Bruno Agostinho
  • Gheduzzi, Sabina
  • Macleod, Alisdair
  • Taylor, Ryan
  • Casonato, Alberto
  • Patterson, Michael
  • Harris, Alex
  • Cazzola, Dario
  • Preatoni, Ezio
  • Fregly, Benjamin J.
  • Serrancoli, Gil
  • Toms, Andrew
  • Gosiewski, Jan
  • Zaribaf, Parnian Hossein Zadeh
  • Mahmoodi, P.
  • Sleeman, J.
  • Hernandez, B. A.
  • Pandit, Hemant
  • Murray, David
  • Coimbra, Joao
  • Fletcher, Lee
  • Potter, I. C.
  • Collin, Shaun
  • Scotchford, C. A.
  • Voisey, K. T.
  • Martin, L.
  • Murray, David W.
  • Pandit, Hemant G.
  • Oconnor, John J.
OrganizationsLocationPeople

document

Tibial Fracture after Unicompartmental Knee Replacement: The Importance of Surgical Cut Accuracy

  • Pandit, Hemant
  • Gill, H. S.
  • Murray, David
  • Pegg, Elise Catherine
Abstract

Introduction and Objectives: <br/>Tibial fracture is a possible complication after unicompartmental knee replacement (UKR) which can have severe consequences for patient recovery and outcome [1]. It appears that the issue is not product specific, as peri-prosthetic fractures have been reported in numerous designs, both mobile and fixed. However, it has been suggested that cementless components might be at greater risk than cemented [2]. The exact causes of tibial fracture are unknown, although surgical factors are most commonly proposed in the literature [1,3]. The objectives of the study were to; (1) determine the range of positions and depths of the surgical cuts required to prepare the tibial plateau for a UKR, (2) use the measured parameters to create a representative range of finite element models, (3) statistically assess the influence of each surgical parameter on the risk of fracture. <br/><br/>Methods: <br/>Tibial plastic Sawbones (n=23) were prepared for mobile UKR during an instructional course. The parametersmeasured from the sawbones were: (a) the resection depth, (b) the angle between the horizontal and vertical cuts, (c) the distance between the vertical wall and the keel slot, how excessively deep the vertical cut and horizontal cuts were anteriorly (d and e, respectively), and posteriorly (f and g, respectively), and (h) the depth of the pin hole (Figure 1). A parametric finite element model was created in ABAQUS software (v6.12, Dassault Systèmes) with an automated python script to create the surgical cuts. One hundred models were created, where the surgical cut parameters were varied within the distributions measured from the Sawbones. A mesh element size of 2.4 mm was used, selected as a result of a mesh convergence study. The tibia was modelled as a heterogeneous linear elastic material, with a Poisson's ratio of 0.3. The modulus of each element was assigned based upon the corresponding position of that element in the CT scan of the tibia. The equations used for this have been previously defined and the tibial model validated [4]. Muscle and joint loading of a tibia at 15% of the gait cycle was applied, corresponding to maximal medial contact force, and the distal portion of the tibial constrained in all degrees of freedom. The risk of fracture was quantified based upon the Maximum Principal Stress criterion equations defined by Schileo et al. [5]. The influence of each surgical parameter on the risk of fracture was assessed using linear regression with R (r-project). <br/><br/>Results: <br/>In the tibial Sawbone measurements, the greatest surgical variation was observed in the depth of the posterior vertical cut and the pin hole, which had standard deviations of 3.9 and 6.8 mm respectively (Table 1). The only surgical cut parameters which were found to significantly affect the risk of fracture were the resection depth, and the posterior depth of the vertical cut (p=0.009, and p=0.000001, respectively). Some finite element models demonstrated a noticeable region at high risk of fracture, which extended diagonally from the vertical saw cut, past the base of the keel slot to the tibial cortex. This matched well with typical fracture paths observed clinically [1]. <br/><br/>Conclusion: This study has shown accuracy in the depth of the vertical cut made to prepare the tibial plateau for UKR, has the greatest clinical variation and has the greatest influence on the risk of fracture out of all the parameters assessed in this study. It is therefore important that instrumentation be designed to improve surgical accuracy for this part of the operative technique. <br/><br/>References: <br/>[1] Pandit, H., et al., Orthopedics, 30: 28-31, 2007.<br/>[2] Seeger, J.B., et al., Knee Surg Sports Traumatol Arthrosc, 20: 1087-1091, 2012.<br/>[3] Clarius, M., et al., The Knee 16: 314-316, 2009.<br/>[4] Gray, H.A., et al., J Biomech Eng, 130: 031016, 2008.<br/>[5] Schileo, E., et al., J Biomech, 41: 356-367, 2008.

Topics
  • impedance spectroscopy
  • polymer
  • computed tomography scan
  • Poisson's ratio