People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Brown, Michael John
University of Dundee
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (9/9 displayed)
- 2024Model CPTs in Chalk
- 2023Understanding Rock-Steel interface properties for use in offshore applicationscitations
- 2018Characterising chalk-concrete interfaces for offshore renewable energy foundations
- 2017Chalk-steel Interface testing for marine energy foundationscitations
- 2010European standard and guideline for rapid load testing on piles
- 2008Experimental assessment of corneal anisotropy
- 2007Assessment of corneal biomechanical properties and their variation with agecitations
- 2004Statnamic testing in clay soils
- 2001The influence on loading rate on pile behaviour in fine grained soils
Places of action
Organizations | Location | People |
---|
article
Experimental assessment of corneal anisotropy
Abstract
<p>PURPOSE: To determine the variation of corneal biomechanical properties with anatomical orientation.</p><p>METHODS: Strip specimens extracted from fresh porcine corneas were tested under uniaxial tension with strain rates representing static and dynamic loading conditions. The specimens were extracted from the vertical, horizontal, and 45 degrees diagonal directions. The load elongation results were used to derive the stress-strain behavior of each specimen. The average behavior for specimens taken in each anatomical direction was determined along with the effect of strain rate. Specimens from a small number of human corneas were included in the study to verify the findings.</p><p>RESULTS: Specimens extracted from the vertical direction of porcine and human corneas demonstrated the highest strength (fracture stress) followed by horizontal then diagonal specimens. Vertical specimens were 10% to 20% stronger than horizontal specimens in porcine and human corneas. At low strain rates (1%/min), vertical specimens displayed similar stiffness (resistance to deformation) to horizontal specimens but greater stiffness than diagonal specimens. On increasing the strain rate to 5000%/min, the stiffness behavior matched that of strength with vertical specimens being 10% to 20% stiffer than horizontal specimens in porcine and human corneas.</p><p>CONCLUSIONS: The corneal anisotropic behavior is compatible with the preferential orientation of stromal fibrils in the vertical and horizontal directions. Quantifying the effect of this nonuniform fibril organization on corneal anisotropic behavior will be useful in developing numerical models of the cornea for applications Where its integrity is compromised such as in simulating refractive surgery procedures.</p>