People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Trask, Rs
University of Bristol
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (56/56 displayed)
- 2024Raman spectroscopic stress mapping of single high modulus carbon fibre composite fragmentation in compressioncitations
- 2023Examining the quasi-static uniaxial compressive behaviour of commercial high-performance epoxy matricescitations
- 2023Examining the Quasi-Static Uniaxial Compressive Behaviour of Commercial High-Performance Epoxy Matricescitations
- 2022MANUFACTURING OF NOVEL HIERARCHICAL HYBRIDISED COMPOSITES
- 2021A life cycle engineering perspective on biocomposites as a solution for a sustainable recoverycitations
- 2019Compressive behaviour of 3D printed thermoplastic polyurethane honeycombs with graded densitiescitations
- 2018Development of Multi-Dimensional 3D Printed Vascular Networks for Self-Healing Materialscitations
- 2017Effect of fibre orientation on the low velocity impact response of thin Dyneema® composite laminatescitations
- 2016Oblique plies for steering through-thickness delamination migration in fiber-reinforced polymers
- 20163-D printed composites with ultrasonically arranged complex microstructurecitations
- 2015Oblique plies for steering through-thickness delamination migration in fibre reinforced polymers
- 2015Optimisation of epoxy blends for use in extrinsic self-healing fibre-reinforced compositescitations
- 2015Application of a silver-olefin coordination polymer as a catalytic curing agent for self-healing epoxy polymerscitations
- 2015Adaptive and active materials
- 2015The development of novel composite sandwich structures with integrated shock absorbing functionality
- 2015An investigation of in-plane performance of ultrahigh molecular weight polyethylene composites
- 2015Counterpropagating wave acoustic particle manipulation device for the effective manufacture of composite materialscitations
- 2015An experimental demonstration of effective Curved Layer Fused Filament Fabrication utilising a parallel deposition robotcitations
- 2015Additive layer manufacturing of composite components
- 2014Stimuli-triggered self-healing functionality in advanced fibre-reinforced compositescitations
- 2014Embedded catalytic healing agents for the repair of fibre-reinforced composites
- 2014Metal triflates as catalytic curing agents in self-healing fibre reinforced polymer composite materialscitations
- 2014Novel self-healing systems
- 2014Repeated self-healing of microvascular carbon fibre reinforced polymer compositescitations
- 2014Thermal ageing mitigation of frp composites using vascular networks
- 2014Bio-inspired structural bistability employing elastomeric origami for morphing applicationscitations
- 2013Healing of low-velocity impact damage in vascularised compositescitations
- 2012Autonomous stimulus triggered self-healing in smart structural compositescitations
- 2012Inhibiting delaminations in fibre reinforced plastic laminates with dropped plies
- 2012Numerical investigation into failure of laminated composite T-piece specimens under tensile loadingcitations
- 2012Stimuli triggered deployment of bio-inspired self-healing functionality
- 2012X-ray damage characterisation in self-healing fibre reinforced polymerscitations
- 2012Mode i interfacial toughening through discontinuous interleaves for damage suppression and controlcitations
- 2012Predicting self-healing strength recovery using a multi-objective genetic algorithmcitations
- 2011Bioinspired vasculatures for self-healing fibre reinforced polymer composites
- 2011Autonomous self-healing functionality in advanced fibre reinforced polymer composite materials
- 2011Self-healing of an epoxy resin using scandium(III) triflate as a catalytic curing agentcitations
- 2011Stimuli triggered deployment of bio-inspired self-healing functionality
- 2011Mode I interfacial toughening through discontinuous interleaves for damage suppression and controlcitations
- 2011The role of embedded bioinspired vasculature on damage formation in self-healing carbon fibre reinforced compositescitations
- 2011A probabilistic approach for design and certification of self-healing advanced composite structurescitations
- 2011Interactions between propagating cracks and bioinspired self-healing vascules embedded in glass fibre reinforced compositescitations
- 2011Multi-mode self-healing in composite materials using novel chemistry
- 2010Bioinspired engineering study of Plantae vascules for self-healing composite structurescitations
- 2010Characterization and analysis of carbon fibre-reinforced polymer composite laminates with embedded circular vasculaturecitations
- 2009Analytical study of vascular networks for self-healing composite laminates
- 2009Compression after impact assessment of self-healing CFRPcitations
- 2009Biomimicry of plantae vascules in the development of self-healing composite structures
- 2008Self-healing sandwich panelscitations
- 2008Minimum mass vascular networks in multifunctional materialscitations
- 2008Bioinspired self-healing of advanced composite materials
- 2007Bioinspired self-healing of advanced composite structures using hollow glass fibrescitations
- 2007Self-healing composite sandwich structurescitations
- 2007Self-healing of impact damaged CFRP
- 2007Biomimetic planar and branched self-healing networks in composite laminates
- 2006Biomimetic self-healing of advanced composite structures using hollow glass fibrescitations
Places of action
Organizations | Location | People |
---|
document
Bioinspired self-healing of advanced composite materials
Abstract
<p>Lightweight, high strength, high stiffness fiber reinforced polymer composite materials are leading contenders to improve the efficiency and sustainability of many forms of transport. They offer immense scope for incorporating multifunctionality due to their hierarchical internal architecture. One limiting factor in their wider exploitation is relatively poor performance under impact loading, a crucial aspect of any safety critical design, leading to a significant reduction in strength, stiffness and stability. This results in conservative design and higher mass structures. Self-healing has the potential to mitigate damage resulting from impact, thereby improving design allowables or offering other benefits such as reduced maintenance and inspection schedules. The work presented in this paper shows that either compartmentalised hollow-fiber or continuous vascular network self-healing approaches can be used for the repair of advanced composite structures. In the nearer term, the specific placement of self-healing plies or individual fibers to match a critical damage threat has been shown to repair internal matrix cracking and delaminations throughout the thickness of a laminate when assessed in both a flexural and compressive loading state. In the longer term, integration of a pervasive, circulatory vascular network within the foam core of a composite sandwich structure has also been shown to offer a marked benefit. The network has negligible influence on structural performance whilst being able to provide reattachment of the foam core and laminate skin after impact damage. In the case studied, a sizeable recovery in flexural and compression after impact strength, and restoration of primary failure mode was observed. Such systems offer significant potential for restoring structural integrity to a composite component during service and prolonging residual life after a damage event.</p>