People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Faria, Rui
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (11/11 displayed)
- 2021Modelling macroscopic shrinkage of hardened cement paste considering C-S-H densificationcitations
- 2020A new test setup for simulation of the combined effect of bending and axial restraint in slab-like specimenscitations
- 20203D numerical simulation of the cracking behaviour of a RC one-way slab under the combined effect of thermal, shrinkage and external loadscitations
- 20193D Thermo-hygro-mechanical approach for simulation of the cracking behaviour of a RC slab under the combined effects of applied loads and restrained shrinkage
- 2019Numerical study of arch dams under the construction and operation scenarios
- 2018Microstructure-based prediction of thermal properties of cement paste at early ages
- 2018Microstructure-based 3d modelling of diffusivity in sound and cracked cement paste
- 2018Proposal of a test set up for simultaneous application of axial restraint and vertical loads to slab-like specimens: sizing principles and application
- 2012A Timoshenko-based structural model for the analysis of bridges
- 2011Numerical simulations of the warth bridge seismic response
- 2010Simplified Procedure for Shear Failure Assessment of RC Framed Structures Exposed to Fire
Places of action
Organizations | Location | People |
---|
document
Numerical simulations of the warth bridge seismic response
Abstract
This work consists on the seismic analysis of the Talübergang Warth bridge studied within the framework of the European research project entitled VAB - Vulnerability Assessment of Bridges [1]. This case-study bridge was built in Austria during the 70's, designed to a very low seismic level, consisting of a seven span continuous deck supported on two abutments and six rectangular hollow section piers, the latter with some peculiar characteristics concerning the reinforcement detailing whose modeling is quite demanding for cyclic response simulation. Still in the VAB project context, a physical scaled model of the bridge was also experimental tested under pseudo-dynamic conditions at the JRC-Ispra [2] and the results were compared against numerical simulations carried out by the FEUP team involved in the project. The non-linear behavior is considered concentrated in the piers, which are discretized with (i) a refined constitutive model or (ii) a Plastic hinge type model for the nonlinear material behavior simulation. For the numerical prediction of the seismic performance of the Talübergang Warth bridge these methodologies were adopted with the seismic action taken as an asynchronous and synchronous ground motion induced along the transverse direction only. The main results of the seismic analyses will be presented focusing on the essential role that the longitudinal reinforcement curtailment plays on macro-crack localization, which leads to a shift of the plastic hinge (usually at the base of piers) up to the elevation where a significant reduction of the longitudinal reinforcement takes place. From the comparison of the numerical predictions with the experimental results, as recorded during the pseudo-dynamic tests performed at the JRC, the capability from the damage model to provide accurate simulations of the seismic performance of the bridge was brought into evidence, even when the piers are difficult to simulate due to the concrete hollow section geometry and to the unusual reinforcement layout adopted in the design (as in this case).