People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Colas, Florent
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (21/21 displayed)
- 2022Improvement of the sensitivity of chalcogenide-based infrared sensors dedicated to the in situ detection of organic molecules in aquatic environment
- 2021Toward Chalcogenide Platform Infrared Sensor Dedicated to the In Situ Detection of Aromatic Hydrocarbons in Natural Waters via an Attenuated Total Reflection Spectroscopy Studycitations
- 2018Infrared-Sensor Based on Selenide Waveguide Devoted to Water Pollution
- 2018Development of Infrared-Sensor for Detecting Water Pollution Based on Selenide Waveguide
- 2017Infrared sensor for water pollution and monitoringcitations
- 2017Theoretical study of an evanescent optical integrated sensor for multipurpose detection of gases and liquids in the Mid-Infraredcitations
- 2015Surface enhanced infrared absorption by nanoantenna on chalcogenide glass substratescitations
- 2015Surface enhanced infrared absorption by nanoantenna on chalcogenide glass substratescitations
- 2015Comparison of adhesion layers of gold on silicate glasses for SERS detectioncitations
- 2015Comparison of adhesion layers of gold on silicate glasses for SERS detectioncitations
- 2014Maximizing the SERS signal by adjusting the arrangement of nanocylinders
- 2013RF sputtered amorphous chalcogenide thin films for surface enhanced infrared absorption spectroscopy
- 2013Chalcogenide Glasses Developed for Optical Micro-sensor Devices
- 2012Surface enhanced infrared absorption (SEIRA) spectroscopy using gold nanoparticles on As2S3 glasscitations
- 2012Optical sensor based on chalcogenide glasses for IR detection of bio-chemical entities
- 2009Chalcogenide Glass Optical Waveguides for Infrared Biosensingcitations
- 2009Chalcogenide Glass Optical Waveguides for Infrared Biosensingcitations
- 2008Surface plasmon resonance in chalcogenide glass-based optical systemcitations
- 2008Surface plasmon resonance in chalcogenide glass-based optical systemcitations
- 2007Chalcogenide waveguide for IR optical rangecitations
- 2007Chalcogenide waveguide for IR optical rangecitations
Places of action
Organizations | Location | People |
---|
document
Maximizing the SERS signal by adjusting the arrangement of nanocylinders
Abstract
For the last decades, Surface Enhanced Raman Scattering (SERS) have been proven a highly sensitive spectroscopy technique and its application have spread in many areas. The electromagnetic enhancement is considered as the main contribution to the overall enhancement process. It is based on near-field enhancement of the electric field through surface plasmon generation. The plasmon mode of nanoparticles depends on the metal, the shape, the size, the substrate, the adhesion layer and the arrangement [1]. Lithographic techniques enable one to accurately control the geometry of the samples [2]. It is then possible to finely optimize these parameters to design of ultra-sensitive sensor. Previous works showed that the period of a regular arrangement of nanoparticles can be a very efficient parameter for tuning the far-field plasmon band [3] through near-field and far-field coupling. In the context of this poster, we will mainly focus on this parameter. Nanocylinders on a periodic square lattice of variable gap distance from 10 to 1000nm will be considered. Their diameters will go from 100 to 200nm. Gold nanoparticles will be considered as this material is stable in aqueous environment and can be easily functionalized. The substrate will be a classical borosilicate glass (BK7) and the adhesion layer a 2-nm-thick chromium film. We will consider cylinders of 50nm-height. In the context of this poster, we will show results of near-field and far-field calculations with Discrete Dipole Approximation (DDA) using DDSCAT 7.3 [4]. They will be compared to extinction spectroscopy and SERS measurements data in some particular the cases.