People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Arbaoui, Larbi
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (4/4 displayed)
- 2016Local heat generation and material flow in friction stir welding of mild steel assembliescitations
- 2015Numerical modelling techniques applicable for the prediction of residual stresses and distortion due to mild steel DH36 frictions stir welding
- 2015Recent developments in steel friction stir weldingcitations
- 2014Advances in friction stir welding of steel
Places of action
Organizations | Location | People |
---|
document
Numerical modelling techniques applicable for the prediction of residual stresses and distortion due to mild steel DH36 frictions stir welding
Abstract
Friction stir welding involves a multi-physics phenomena, including visco-plasticity, material flow, metallurgical transformation, heat generation, thermal straining and structural interaction. Numerical modelling provides an efficient and cost effective tool capable to analysis and predict the different phenomena. This study integrates different numerical modelling strategies to ultimately develop a robust yet computationally efficient modelling technique capable of predicting residual stresses and distortion due to FSW. A computational efficient local-global numerical model capable of predicting the material visco-plastic flow, thermal transients, stir/heat affected zone, residual stresses and distortion developed due to friction stir welding of DH36 plates is described. Different thermo-elasto-plastic modelling strategies ranging from analytical to transient numerical models are explored and the most robust and computational efficient strategy is identified through cross-reference with the realistic experimental test results.<br/>