Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Peat, Tom

  • Google
  • 7
  • 8
  • 177

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (7/7 displayed)

  • 2017The erosion performance of particle reinforced metal matrix composite coatings produced by co-deposition cold gas dynamic spraying40citations
  • 2017The erosion performance of cold spray deposited metal matrix composite coatings with subsequent friction stir processing82citations
  • 2017Enhanced erosion performance of cold spray co-deposited AISI316 MMCs modified by friction stir processing51citations
  • 2016Microstructural evaluation of cold spray deposited WC with subsequent friction stir processing4citations
  • 2016Evaluation of the synergistic erosion-corrosion behaviour of HVOF thermal spray coatingscitations
  • 2016Cold gas dynamic spraying of metal matrix composite coatings with subsequent friction stir processingcitations
  • 2015Microstructural evaluation of cold spray deposited WC with subsequent friction stir processingcitations

Places of action

Chart of shared publication
Galloway, Alexander
7 / 33 shared
Iqbal, Naveed
6 / 12 shared
Mcnutt, Philip
3 / 4 shared
Toumpis, Athanasios
5 / 30 shared
Steel, Russell
1 / 2 shared
Zhu, Wenzhong
1 / 10 shared
Marrocco, Tiziana
2 / 14 shared
Harvey, David
1 / 4 shared
Chart of publication period
2017
2016
2015

Co-Authors (by relevance)

  • Galloway, Alexander
  • Iqbal, Naveed
  • Mcnutt, Philip
  • Toumpis, Athanasios
  • Steel, Russell
  • Zhu, Wenzhong
  • Marrocco, Tiziana
  • Harvey, David
OrganizationsLocationPeople

article

Evaluation of the synergistic erosion-corrosion behaviour of HVOF thermal spray coatings

  • Galloway, Alexander
  • Peat, Tom
  • Harvey, David
  • Toumpis, Athanasios
Abstract

The present study examines three High Velocity Oxy Fuel deposited coatings, Tungsten Carbide, Chromium Carbide and Aluminium Oxide, under slurry erosion-corrosion conditions. Coatings produced in this manner typically exhibit superior density and hardness over alternative thermal spray technologies, therefore are suitable for use in corrosive and highly erosive environments. The scope of the study concentrates on isolation of the contributing factors of erosion, corrosion and synergy through applied electrochemistry, as well as metallographic analysis to evaluate the mechanisms causing coating degradation. The aim of which is to provide comprehensive data on the performance of the mentioned coatings under erosion-corrosion in conditions representing a flowing environment. Results demonstrate the breakdown of Chromium Carbide and Aluminium Oxide coatings result in enhanced mass loss over the uncoated S355 steel. Despite this, results have shown Tungsten Carbide with a Cobalt binder to be an effective protective coating, resulting in a significant reduction in total material loss over uncoated S355 steel.

Topics
  • density
  • impedance spectroscopy
  • chromium
  • aluminum oxide
  • aluminium
  • carbide
  • steel
  • hardness
  • cobalt
  • tungsten
  • spray coating
  • erosion-corrosion