People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Peat, Tom
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (7/7 displayed)
- 2017The erosion performance of particle reinforced metal matrix composite coatings produced by co-deposition cold gas dynamic sprayingcitations
- 2017The erosion performance of cold spray deposited metal matrix composite coatings with subsequent friction stir processingcitations
- 2017Enhanced erosion performance of cold spray co-deposited AISI316 MMCs modified by friction stir processingcitations
- 2016Microstructural evaluation of cold spray deposited WC with subsequent friction stir processingcitations
- 2016Evaluation of the synergistic erosion-corrosion behaviour of HVOF thermal spray coatings
- 2016Cold gas dynamic spraying of metal matrix composite coatings with subsequent friction stir processing
- 2015Microstructural evaluation of cold spray deposited WC with subsequent friction stir processing
Places of action
Organizations | Location | People |
---|
article
Evaluation of the synergistic erosion-corrosion behaviour of HVOF thermal spray coatings
Abstract
The present study examines three High Velocity Oxy Fuel deposited coatings, Tungsten Carbide, Chromium Carbide and Aluminium Oxide, under slurry erosion-corrosion conditions. Coatings produced in this manner typically exhibit superior density and hardness over alternative thermal spray technologies, therefore are suitable for use in corrosive and highly erosive environments. The scope of the study concentrates on isolation of the contributing factors of erosion, corrosion and synergy through applied electrochemistry, as well as metallographic analysis to evaluate the mechanisms causing coating degradation. The aim of which is to provide comprehensive data on the performance of the mentioned coatings under erosion-corrosion in conditions representing a flowing environment. Results demonstrate the breakdown of Chromium Carbide and Aluminium Oxide coatings result in enhanced mass loss over the uncoated S355 steel. Despite this, results have shown Tungsten Carbide with a Cobalt binder to be an effective protective coating, resulting in a significant reduction in total material loss over uncoated S355 steel.