Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Bellamy, L. J.

  • Google
  • 1
  • 5
  • 0

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2005Monitoring of a heterogeneous reaction by acoustic emissioncitations

Places of action

Chart of shared publication
Waddell, R.
1 / 1 shared
Hayward, G.
1 / 23 shared
Littlejohn, David
1 / 6 shared
Gachagan, Anthony
1 / 76 shared
Nordon, Alison
1 / 9 shared
Chart of publication period
2005

Co-Authors (by relevance)

  • Waddell, R.
  • Hayward, G.
  • Littlejohn, David
  • Gachagan, Anthony
  • Nordon, Alison
OrganizationsLocationPeople

article

Monitoring of a heterogeneous reaction by acoustic emission

  • Bellamy, L. J.
  • Waddell, R.
  • Hayward, G.
  • Littlejohn, David
  • Gachagan, Anthony
  • Nordon, Alison
Abstract

The feasibility of monitoring the reaction of itaconic acid and 1-butanol by non-invasive acoustic emission measurements has been assessed. A piezoelectric transducer with a resonant mode at 90 kHz was attached to the external wall of a 1 L jacketed glass reactor. Acoustic emission from the oil jacket, stirrer and toluene was insignificant in comparison to that produced by the itaconic acid particles, which was transmitted through the glass walls and heating oil to the transducer. The transducer responded to acoustic emission from itaconic acid up to 300 kHz, with the region around 90 kHz having the highest sensitivity. The effect of particle concentration and size on the acoustic emission generated has also been investigated, with higher concentrations and larger particles giving the greater signals. The detection limit for itaconic acid particles was 14 g dm−3 of toluene. The effect of 1-butanol concentration and temperature on the progression of reactions was monitored using acoustic emission. It was possible to detect differences in the rate and extent of the reaction under different conditions, and also to identify when a combination of the concentration and/or size of itaconic acid particles had reached a steady state. However, it was not possible to differentiate between changes in particle size and concentration using the resonant transducer. <br/> <br/>

Topics
  • glass
  • glass
  • acoustic emission