People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Anwar, Ali
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (2/2 displayed)
Places of action
Organizations | Location | People |
---|
document
Effect of high temperature on structural behaviour of metal-to-metal seal in a pressure relief valve
Abstract
This paper presents a numerical study involving the deformation of contact faces for a metal-to-metal seal in a typical pressure relief valve. The valve geometry is simplified to an axisymmetric problem, which comprises a simple geometry consisting of only three components: A cylindrical nozzle; which is in contact with a disc (representing the valve seat on top); which is preloaded by a compressed linear spring. The nozzle-disk pair is made of the austenitic stainless steel AISI type 316N(L) steel, which is typically used for power plant components. In a previous study, the macro-micro interaction of Fluid Pressure Penetration (FPP) was carried out in an iterative manual procedure at a temperature of 20°C. This procedure is now automated and implemented through an APDL script, which adjusts the spring force according to the current depth of FPP at a macroscale to maintain a consistent seal at elevated temperatures. Based upon the obtained results, specific suggestions to improve the leak tightness of the metal-to-metal seals at elevated temperatures are formulated.