People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Nielsen, Rudi Pankratz
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (2/2 displayed)
Places of action
Organizations | Location | People |
---|
document
MICROWAVE INDUCED DEGRADATION OF GLASS FIBER REINFORCED POLYESTER FOR FIBER AND RESIN RECOVERY
Abstract
A solvolysis process to depolymerize the resin in glass fiber reinforced composites and recover the glass fibers has been investigated using microwave induced irradiation. The depolymerization was carried out in HNO3 with concentrations in the range of 1M-7M and in KOH with concentrations ranging from 1M-3.5M. With HNO3 concentrations of 3.5 M, 100 % resin removal was achieved at 208°C and recovery of pristine glass fibers without damage on the surface. Furthermore, it was possible to recover the monomer phthalic acid most efficiently at HNO3 concentrations ≤ 3.5M. Decreased level of depolymerization was achieved using KOH at concentrations ranging from 1-3.5M. Maximum 63 % resin removal was achieved using 1 M KOH and the resin removal efficiency decreased at higher KOH concentrations (3.5M). The glass fiber surfaces were damaged at both concentrations with more pronounced damages using 3.5M KOH. It was not possible to recover monomers using KOH.