Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Svenson, Mouritz Nolsøe

  • Google
  • 3
  • 8
  • 0

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (3/3 displayed)

  • 2014Understanding Structure-Property Relations of Compressed Glasses through Relaxation Studiescitations
  • 2014Pressure-Induced Changes in Inter-Diffusivity and Compressive Stress in Chemically Strengthened Glasscitations
  • 2014Understanding Structure-Property Relations of Compressed Glasses through Relaxation Studies:Invited Talkcitations

Places of action

Chart of shared publication
Mauro, John C.
3 / 47 shared
Smedskjær, Morten Mattrup
3 / 111 shared
Yue, Yuanzheng
2 / 86 shared
Youngman, Randall E.
3 / 28 shared
Rzoska, Sylwester J.
3 / 10 shared
Bauchy, Mathieu
2 / 36 shared
Bockowski, Michal
1 / 22 shared
Thirion, Lynn M.
1 / 1 shared
Chart of publication period
2014

Co-Authors (by relevance)

  • Mauro, John C.
  • Smedskjær, Morten Mattrup
  • Yue, Yuanzheng
  • Youngman, Randall E.
  • Rzoska, Sylwester J.
  • Bauchy, Mathieu
  • Bockowski, Michal
  • Thirion, Lynn M.
OrganizationsLocationPeople

document

Understanding Structure-Property Relations of Compressed Glasses through Relaxation Studies

  • Svenson, Mouritz Nolsøe
  • Mauro, John C.
  • Smedskjær, Morten Mattrup
  • Yue, Yuanzheng
  • Youngman, Randall E.
  • Rzoska, Sylwester J.
  • Bauchy, Mathieu
Abstract

When a glassy material or its liquid state is subjected to sufficiently high pressure, significant changes can take place in the short- and medium-range structure, vibrational density of states, and physical properties. It is crucial to determine and understand the structure-property relations under high pressure from both scientific and technological perspectives, since the glass structures frozen-in under elevated pressure may give rise to properties unattainable under ambient pressure. However, the structural and topological origins of the pressure-induced changes in macroscopic properties are not yet well understood. Here, we address this problem by subjecting various isostatically compressed glasses to isothermal annealing at ambient pressure and monitor the relaxation of glass structure and properties as a function of time and temperature. For different glass systems, density is found to relax in a stretched exponential manner with an exponent close to the Phillips value of 3/5 for relaxation in three dimensions when both short- and long-range interactions are activated [1]. For a compressed soda lime borate glass, we find that upon annealing at 0.9Tg, the pressure-induced increase in boron coordination remains unchanged, while the pressurized values of macroscopic properties such as density, refractive index, and hardness are relaxing [2]. Hence, the pressure-induced changes in macroscopic properties are not necessarily attributed to changes in the short-range order in the glass, but rather to changes in overall atomic packing density and medium-range structures. Moreover, we show that the relaxation mechanism depends on the annealing temperature and different physical properties (e.g., density and hardness) are found to relax on different timescales.<br/><br/>[1] M. M. Smedskjaer, S. J. Rzoska, M. Bockowski, J. C. Mauro, Journal of Chemical Physics 140, 054511 (2014).<br/>[2] M. M. Smedskjaer, R. E. Yougnman, S. Striepe, M. Potuzak, U. Bauer, J. Deubener, H. Behrens, J. C. Mauro, Y. Z. Yue, Scientific Reports 4, 3770 (2014).

Topics
  • density
  • impedance spectroscopy
  • glass
  • glass
  • hardness
  • Boron
  • annealing
  • lime