Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Lopes, Ab

  • Google
  • 1
  • 5
  • 0

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2004Phase and structural study of self-doped La1-x-yCaxOyMnO3+deltacitations

Places of action

Chart of shared publication
Tavares, Pb
1 / 26 shared
Araujo, Jp
1 / 91 shared
Vieira, Jm
1 / 17 shared
Amaral, Vs
1 / 15 shared
Figueiras, F.
1 / 10 shared
Chart of publication period
2004

Co-Authors (by relevance)

  • Tavares, Pb
  • Araujo, Jp
  • Vieira, Jm
  • Amaral, Vs
  • Figueiras, F.
OrganizationsLocationPeople

article

Phase and structural study of self-doped La1-x-yCaxOyMnO3+delta

  • Tavares, Pb
  • Araujo, Jp
  • Vieira, Jm
  • Amaral, Vs
  • Figueiras, F.
  • Lopes, Ab
Abstract

To understand the combined effect of divalent ion and A-site vacancy (circle divide) self-doping, beyond the binary La1-xMnO3 system, polycrystalline La(1-x-y)Ca(x)circle divide(y)MnO(3+delta) samples were studied. Samples with Ca substitution and excess Mn in the range x < 0.33 and y < 0.45, respectively, were prepared by standard solid-state reactions. Structural and phase analysis of the samples were done by X-ray diffraction and transmission electron microscopy. The manganite structure in this composition range includes rhombic and orthorhombic phases. Most samples contain the hausmanite phase (Mn3O4) coexisting with the manganite phase. A small amount of perovskite related AMn(7)O(12) (A = La, Ca) structure near the hausmanite-manganite boundary is also found in samples treated in oxygen atmosphere. The calculated vacancy content accommodated in the manganite phase can be higher than 1/8, the reported limit for La1-xMnO3, which is confirmed in our x = 0 sample. For the compositions studied, a ferromagnetic metallic behavior below T-C is found, confirming the stability of the Mn sublattice, and near the optimum stoichiometric ((x = 0.33, y = 0) system, a net A-site vacancy content (up to y = 0.2) does not degrade the magnetic and electric properties.

Topics
  • perovskite
  • impedance spectroscopy
  • phase
  • x-ray diffraction
  • Oxygen
  • transmission electron microscopy
  • vacancy