Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Peters, Chris

  • Google
  • 2
  • 5
  • 0

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (2/2 displayed)

  • 2010Exposing the Kepler Scientific Workflow System as an OGC Web Processing Servicecitations
  • 2001Real-time, nonintrusive oxidation detection system for the welding of reactive aerospace materialscitations

Places of action

Chart of shared publication
Terhorst, Andrew
1 / 2 shared
Blewett, Ian
1 / 1 shared
Fox, M. D. T.
1 / 1 shared
Jones, J. D. C.
1 / 10 shared
Hand, Duncan P.
1 / 60 shared
Chart of publication period
2010
2001

Co-Authors (by relevance)

  • Terhorst, Andrew
  • Blewett, Ian
  • Fox, M. D. T.
  • Jones, J. D. C.
  • Hand, Duncan P.
OrganizationsLocationPeople

article

Real-time, nonintrusive oxidation detection system for the welding of reactive aerospace materials

  • Blewett, Ian
  • Fox, M. D. T.
  • Jones, J. D. C.
  • Hand, Duncan P.
  • Peters, Chris
Abstract

<p>We describe the development of a real-time nonintrusive monitor to detect degradation of a gas shield condition during laser welding by use of on-axis spectrally resolved detection of light emitted from the workpiece. Failure of gas shielding to the point at which there is a risk of contamination from the air is revealed by the marked increase in the intensity of a spectral feature around 426 nm. To avoid unwanted sensitivity to the overall intensity of the radiation, the intensity at 426 nm is normalized by that at 835 nm, where the spectrum is insensitive to gas shielding. We collected the radiation by using the same optics as are used to deliver the processing beam, and thus the detection process is entirely nonintrusive. We demonstrate successful operation for welding stainless steel and titanium under both helium and argon gas shielding. © 2001 Optical Society of America.</p>

Topics
  • impedance spectroscopy
  • stainless steel
  • reactive
  • titanium