People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Russell, Phillip St J.
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (1/1 displayed)
Places of action
Organizations | Location | People |
---|
document
Delivery of high energy light through pbg fiber for laser machining
Abstract
<p>Conventional silica fiber optics cannot currently deliver the high beam quality, high peak power pulses required for micro-machining applications due to damage limitations. Recently developed photonic bandgap (PBG) fibers have the potential to overcome this limitation as the power is mostly contained within an air-core, with guidance arising from the periodic nature of the cladding. We report the delivery of high energy nanosecond pulses from a high repetition rate (up to 100 kHz) Q-switched Nd:YAG laser through the fundamental mode of a PBG fiber at 1064 nm. The damage limitations of the PBG silica structure are investigated, together with its application to precision micro-machining. We present an optimized fiber design to reduce the light-in-glass fraction and hence maximize the power handling capability. Short pulses (around 60 ns pulse width) and energies of the order of 0.5 mJ were delivered in a single spatial mode through the hollow-core fiber providing the pulse energy and high beam quality required for micro-machining of metals. Practical micro-machining of metal sheet is also presented.</p>