People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Boffa, Vittorio
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (21/21 displayed)
- 2024Metal-organic framework-intercalated graphene oxide nanofiltration membranes for enhanced treatment of wastewater effluentscitations
- 2024Metal-organic framework-intercalated graphene oxide nanofiltration membranes for enhanced treatment of wastewater effluentscitations
- 2024Metal-organic framework-intercalated graphene oxide nanofiltration membranes for enhanced treatment of wastewater effluentscitations
- 2024A self-cleaning thermocatalytic membrane for bisphenol a abatement and fouling removalcitations
- 2023A Thermocatalytic Ceramic Membrane by Perovskite Incorporation in the Alumina Frameworkcitations
- 2023Thermocatalytic Performance of LaCo1−xNixO3−δ Perovskites in the Degradation of Rhodamine Bcitations
- 2023Beneficial effect of cerium excess on in situ grown Sr0.86Ce0.14FeO3–CeO2 thermocatalysts for the degradation of bisphenol Acitations
- 2023Removal of As(III) via adsorption and photocatalytic oxidation with magnetic Fe-Cu nanocompositescitations
- 2023Beneficial effect of cerium excess on in situ grown Sr 0.86 Ce 0.14 FeO 3 –CeO 2 thermocatalysts for the degradation of bisphenol Acitations
- 2021Ceramic Processing of Silicon Carbide Membranes with the Aid of Aluminum Nitrate Nonahydrate: Preparation, Characterization, and Performancecitations
- 2021Hydrothermal preparation of B–TiO2-graphene oxide ternary nanocomposite, characterization and photocatalytic degradation of bisphenol A under simulated solar irradiationcitations
- 2021Degradation of organic micropollutants in water using a novel thermocatalytic membrane
- 2021A graphene oxide-based nanofiltration membrane for the catalytic abatement of organic pollutants in wastewater
- 2020Enhanced Fabrication of Silicon Carbide Membranes for Wastewater Treatmentcitations
- 2020Enhanced Fabrication of Silicon Carbide Membranes for Wastewater Treatment:From Laboratory to Industrial Scalecitations
- 2018Catalytic activity of doped SrFeO3-δ perovskite-type oxide ceramics for degradation of water pollu-tants
- 2017Mutual-stabilization in chemically bonded graphene oxide–TiO2 heterostructures synthesized by a sol–gel approachcitations
- 2014Deposition of thin ultrafiltration membranes on commercial SiC microfiltration tubescitations
- 2013Toward the effective design of steam-stable silica-based membranescitations
- 2012Development of nanoporous TiO2 and SiC membranes for membrane filtration
- 2009Urban Wastes as Sources of Valuable Chemicals for Sustainable development: Surfactants, dispersing polymers and polyelectrolytes of biological origin
Places of action
Organizations | Location | People |
---|
document
Development of nanoporous TiO2 and SiC membranes for membrane filtration
Abstract
Reverse osmosis membranes are increasingly used for the production of drinking water (desalination of sea water or brackish water), for demineralisation of water in industrial processes (boiled feed water, microelectronics production) as well as in food processing and pharmaceutical production. Today´s reverse osmosis membranes are made of polymers; however, these membranes have several technical limitations, for example, low water fluxes and high sensitivity to oxidizing chemicals. Since membrane fouling is still a major problem in reverse osmosis desalination plants, replacement of polymer reverse osmosis membranes by ceramic counterparts would provide higher fluxes and allow more efficient cleaning of the membranes. <br/>The aim of this work was to prepare defect-free nanoporous ceramic (TiO2 and SiC) layers on macroporous SiC supports by using electrophoretic deposition and dip-coating. Ceramic powder was dispersed in water and in ethanol, and to increase absolute value of zeta-potential of the particles, different deflocculants (hexadecyltrimethylammonium bromide, polyethylene imine) were added. In parallel, SiC layers were prepared by dip-coating of suspensions containing pre-ceramic polymer allyl-hydridopolycarbosilane dissolved in hexane with addition of submicron SiC particles. In all the cases, after coating step, the layers were dried and heat treated under different conditions. Results show that particle size distribution and thickness of the coatings play an important role in formation of defects. The number of defects decreased with decreasing thickness of the coatings. Furthermore, coatings composed of a mixture of nanosized and submicron SiC powder were more homogeneous than the coatings composed only of nanosized SiC powders. In comparison to conventionally sintered SiC coatings, polymer derived SiC coatings were much better adhered to the surface of macroporous SiC supports.