People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Pareschi, Giovanni
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (28/28 displayed)
- 2022ATHENA optics technology developmentcitations
- 2021The Athena x-ray optics development and accommodationcitations
- 2021The Athena x-ray optics development and accommodationcitations
- 2016Thermal forming of substrates for the x-ray surveyor telescopecitations
- 2014Evaluation of the surface strength of glass plates shaped by hot slumping processcitations
- 2013Cold-shaping of thin glass foils as a method for mirror processing: from basic concepts to mass production of mirrorscitations
- 2013Accurate integration of segmented x-ray optics using interfacing ribscitations
- 2010The optics system of the New Hard X-ray Mission: design and developmentcitations
- 2009Design And Development The Ixo Mirrors By Innovative Slumping Glass Technologies
- 2009Stiff and Lightweight Optical Mirrors Made by Glass Slumping with Foamed Core
- 2009Design and development of the optics system for the NHXM Hard X-ray and Polarimetric Missioncitations
- 2009Lightweight Mirror Developments
- 2009Surface smoothness requirements for the mirrors of the IXO x-ray telescopecitations
- 2009Enabling deposition of hard x-ray reflective coatings as an industrial manufacturing processcitations
- 2008Simbol-X mirror module design scientific optimization.
- 2008Simbol-X: A New Generation Soft/Hard X-ray Telescope
- 2008Feasibility study for the manufacturing of the multilayer X-ray optics for Simbol-X
- 2008The relation between the weight and the quality image in a X-ray telescope, with a particular regard to Simbol-X
- 2007Characterization of thin plastic foils for applications in x-ray optics technology
- 2005Recent results on manufacturing of segmented x-ray mirrors with slumped glasscitations
- 2004Hard X-ray multilayer coated astronomical mirrors by e-beam depositioncitations
- 2004Measurements of spectral and position resolution on a 16x16 pixel CZT imaging hard x-ray detectorcitations
- 2003Replication by Ni electroforming approach to produce the Con-X/HXT hard x-ray mirrorscitations
- 2003The HEXIT (High Energy X-ray Imaging Telescope) balloon-borne mission
- 2003Alternative mirror technologies
- 2002Development of soft and hard x-ray optics for astronomy: progress report II and considerations on material properties for large-diameter segmented optics of future missionscitations
- 2000Integral shell mirrors for the Constellation X-ray mission hard x-ray telescopecitations
- 2000Nickel-replicated multilayer optics for soft and hard x-ray telescopescitations
Places of action
Organizations | Location | People |
---|
article
Simbol-X: A New Generation Soft/Hard X-ray Telescope
Abstract
Simbol-X is arguably the most powerful broad-band focusing hard (0.5-80 keV) X-ray telescope operating in the2013 timeframe. The combination of good angular resolution, broad energy response, and efficient observing provided by a good field of view and high orbit will provide a very large increase in sensitivity in a hitherto relatively unexplored spectral region. This will enable key scientific investigations including a census of supermassive black holes in the crucial energy range in which the cosmic X-ray background peaks, measurements of the geometry and dynamics of accretion in black hole binaries, characterization of hard X-ray sources in the Galactic center, and the nature and origin of energetic particles in galaxy clusters and supernova remnants. Its single optics module contains a set of nested nickel shells coated with multilayers to boost the high-energy response and the field of view. Its focal plane detectors are a novel hybrid configuration, with thick-depletion silicon providing the low energy response, and Cadmium Telluride the high energy response. To achieve the long focal length necessary for large collecting areas at high energies, the optics and detectors are on separate high-earth-orbit formation-flying spacecrafts, 20 m apart.We describe a proposed US participation in the Simbol-X program to provide technical expertise in the area of multilayer coatings for the X-ray optics; expertise in science and the X-ray testing and calibration of the flight optics; and support as a data analysis, Guest Investigator, and archiving center. The use of the NASA DSN Goldstone station, as a complement to the Malindi tracking station,will also be provided.