People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Pareschi, Giovanni
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (28/28 displayed)
- 2022ATHENA optics technology developmentcitations
- 2021The Athena x-ray optics development and accommodationcitations
- 2021The Athena x-ray optics development and accommodationcitations
- 2016Thermal forming of substrates for the x-ray surveyor telescopecitations
- 2014Evaluation of the surface strength of glass plates shaped by hot slumping processcitations
- 2013Cold-shaping of thin glass foils as a method for mirror processing: from basic concepts to mass production of mirrorscitations
- 2013Accurate integration of segmented x-ray optics using interfacing ribscitations
- 2010The optics system of the New Hard X-ray Mission: design and developmentcitations
- 2009Design And Development The Ixo Mirrors By Innovative Slumping Glass Technologies
- 2009Stiff and Lightweight Optical Mirrors Made by Glass Slumping with Foamed Core
- 2009Design and development of the optics system for the NHXM Hard X-ray and Polarimetric Missioncitations
- 2009Lightweight Mirror Developments
- 2009Surface smoothness requirements for the mirrors of the IXO x-ray telescopecitations
- 2009Enabling deposition of hard x-ray reflective coatings as an industrial manufacturing processcitations
- 2008Simbol-X mirror module design scientific optimization.
- 2008Simbol-X: A New Generation Soft/Hard X-ray Telescope
- 2008Feasibility study for the manufacturing of the multilayer X-ray optics for Simbol-X
- 2008The relation between the weight and the quality image in a X-ray telescope, with a particular regard to Simbol-X
- 2007Characterization of thin plastic foils for applications in x-ray optics technology
- 2005Recent results on manufacturing of segmented x-ray mirrors with slumped glasscitations
- 2004Hard X-ray multilayer coated astronomical mirrors by e-beam depositioncitations
- 2004Measurements of spectral and position resolution on a 16x16 pixel CZT imaging hard x-ray detectorcitations
- 2003Replication by Ni electroforming approach to produce the Con-X/HXT hard x-ray mirrorscitations
- 2003The HEXIT (High Energy X-ray Imaging Telescope) balloon-borne mission
- 2003Alternative mirror technologies
- 2002Development of soft and hard x-ray optics for astronomy: progress report II and considerations on material properties for large-diameter segmented optics of future missionscitations
- 2000Integral shell mirrors for the Constellation X-ray mission hard x-ray telescopecitations
- 2000Nickel-replicated multilayer optics for soft and hard x-ray telescopescitations
Places of action
Organizations | Location | People |
---|
article
Design And Development The Ixo Mirrors By Innovative Slumping Glass Technologies
Abstract
At INAF Brera Astronomical Observatory development activities are ongoing aiming at the design and development of the IXO mirrors based on slumping glass technique. Our approach is based on the use of thermal slumping of thin glass optics and it presents a number of innovative solution for the implementation. In particular our approach foresees the use of a ceramic mould made of SiC for thermal shaping of the glass segments, which occurs exerting a proper pressure during the moulding process. A thin layer (a few hundred Angstroms) of Pt or Ir is previously deposited on the glass segment, to prevent the adhesion on the SiC mould surface. Therefore this coating not only acts as a release agent of the process but, at the same time, it has also the role of reflecting layer of the X-ray mirror (in a sense like it was the role of gold in the Ni electroforming replication method used for the XMM shells). SiC is chosen for its very good T/M characteristics and, in particular, a very high thermal conductivity and very low CTE. SiC mould will be produced via injection moulding process, followed by a the application of a cladding layer (a few tens microns) application of CVD SiC for allowing a superpolishing of the surface until a roughness of a few Angstrom rms is achieved. Once the mirror segments are produced, they are integrated in petals by means of air-bearings supports, that allows us to maintain the proper shape of the segments without deformations. The segments are stacked into the petals by the use of connecting ribs, glued to the front surface of each mirror and to the rear of the next one....