People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Kwon, Hyunchul
ETH Zurich
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (4/4 displayed)
Places of action
Organizations | Location | People |
---|
document
Large-scale 3D printing for functionally-graded facade
Abstract
<p>Additive manufacturing (AM) technologies such as fused deposition modeling (FDM) have been gaining ground in architecture due to their potential to fabricate geometrically complex building components with integrated functionality. With that in mind, this paper showcases a novel design and fabrication strategy for the production of functionally graded façade elements. Three functional integrations are investigated: gradient infill structures (Figure 1), a non-orthogonal discretization approach for 3D-printed façade elements, and an integrated snapping panel-to-panel connection system. The presented process is then incorporated into a large-scale demonstrator consisting of eight individual façade-panel elements. This paper first presents a prototypical approach for a large-scale, graded 3D-printed facade system with non-standard discretization and then opens the discussion to further related challenges.</p>