People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Wan, Chaoying
University of Warwick
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (17/17 displayed)
- 2024Piezo-tribo-electric nanogenerator based on BCZT/MCNTs/PDMS piezoelectric composite for compressive energy harvestingcitations
- 2024High ferroelectric performance of poly (vinylidene difluoride-co-hexafluoropropylene) - based membranes enabled by electrospinning and multilayer lamination
- 2022Electron beam-mediated cross-linking of blown film-extruded biodegradable PGA/PBAT blends toward high toughness and low oxygen permeationcitations
- 2022Tailoring electromechanical properties of natural rubber vitrimers by cross-linkerscitations
- 2022Oligomeric Curing Activators Enable Conventional Sulfur-Vulcanized Rubbers to Self-Healcitations
- 2020Self-healing dielectric elastomers for damage-Tolerant actuation and energy harvestingcitations
- 2020Gas Barrier Polymer Nanocomposite Films Prepared by Graphene Oxide Encapsulated Polystyrene Microparticlescitations
- 2020Understanding the enhancement and temperature-dependency of the self-healing and electromechanical properties of dielectric elastomers containing mixed pendant polar groupscitations
- 2020Structure and dielectric properties of electroactive tetraaniline grafted non-polar elastomerscitations
- 2019Electrical dual-percolation in MWCNTs/SBS/PVDF based thermoplastic elastomer (TPE) composites and the effect of mechanical stretchingcitations
- 2018Stress-oscillation behaviour of semi-crystalline polymers: the case of poly(butylene succinate)citations
- 2018Intrinsically Tuning the Electromechanical Properties of Elastomeric Dielectricscitations
- 2018Intrinsically Tuning the Electromechanical Properties of Elastomeric Dielectrics:A Chemistry Perspectivecitations
- 2018Intrinsic tuning of poly (styrene-butadiene-styrene) (SBS) based self-healing dielectric elastomer actuators with enhanced electromechanical propertiescitations
- 2017Functionalization of BaTiO3 nanoparticles with electron insulating and conducting organophosphazene-based hybrid materialscitations
- 2016Functionalisation of MWCNTs with poly(lauryl acrylate) polymerised by Cu(0)-mediated and RAFT methodscitations
- 2014Photoinduced sequence-control via one pot living radical polymerization of acrylatescitations
Places of action
Organizations | Location | People |
---|
article
High ferroelectric performance of poly (vinylidene difluoride-co-hexafluoropropylene) - based membranes enabled by electrospinning and multilayer lamination
Abstract
Dielectric materials with ultrahigh energy storage and discharge capabilities have become increasingly vital for high energy efficiency in modern electronics which require immense pulsed power delivery. Ferroelectric polymers offer the benefit of being relatively low-cost, lightweight, and having a lower carbon footprint to produce and maintain in comparison to ceramics. Electrospinning polyvinylidene difluoride (PVDF) nanofibres have proven to produce a highly polarised polymorph, although dielectrics involving these alone often have problems with leakage currents. In this work, multilayer all-polymer laminates were assembled by alternative stacking of poly (methyl methacrylate) (PMMA) thin films and electrospun poly (vinylidene difluoride-co-hexafluoropropylene) (PVDF-co-HFP) membranes, where the nonwoven PVDF-co-HFP nanofibrous membranes were electrospun with an ionic liquid (1-allyl-3-methylimidazolium chloride (AMIM) to eliminate leakage currents and maximize the discharged energy density. The effects of the crystallography, microstructures and interfaces of the multilayer PMMA/PVDF-co-HFP laminates on the energy storage capacity were discussed.