People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Fagan, Patrick
Laboratoire de Génie Électrique et Électronique de Paris
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (4/4 displayed)
- 2024Tensile stress effect on magnetic Barkhausen noise of silicon steel single crystal (measurements and simulations)
- 2022Multi-scale characterization and simulation of the magnetic Barkhausen noise effect : towards steel non-destructive testing
- 2022Effect of stress on the Magnetic Barkhausen Noise energy cycles: a route for stress evaluation in ferromagnetic materialscitations
- 2020Barkhausen noise control and simulation
Places of action
Organizations | Location | People |
---|
conferencepaper
Tensile stress effect on magnetic Barkhausen noise of silicon steel single crystal (measurements and simulations)
Abstract
The Magnetic Barkhausen Noise (MBN) measurement can be used to evaluate non-destructively mechanical internal stress in electrical steel laminations. However, such evaluation is complex as various factors can distort the MBN signal similarly. Internal stress is one of them, but an increase in dislocation density or other defects can be just as influential. This work focuses on single crystals with pre-determined crystallographic orientation to isolate basic mechanisms. The reconstructed MBN energy hysteresis cycles are compared to classical hysteresis loops, and to simulation obtained from a multiscale model. These comparisons provide new insights into the impact of tensile stress on the magnetization process and the magnetic domains kinetics and bring perspectives regarding the ideal way to perform MBN non-destructive evaluation of internal mechanical stress.