People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Presoly, Peter
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (25/25 displayed)
- 2024Experimental investigation and computational thermodynamics of the quaternary system Fe-C-Mn-S
- 2024On the Role of Tramp Elements for Surface Defect Formation in Continuous Casting of Steelcitations
- 2024Influence of Silicon and Tramp Elements on the High-temperature Oxidation of Steel in Direct Casting and Rolling Processes
- 2024Critical Examination of the Representativeness of Austenite Grain Growth Studies Performed In Situ Using HT-LSCM and Application to Determine Growth-inhibiting Mechanismscitations
- 2023The influence of intergranular oxidation on surface crack formation in continuous casting of steelcitations
- 2023Classification of peritectic steels by experimental methods, computational thermodynamics and plant data: An Overview
- 2023Thermodynamic modeling of the Fe-Sn system including an experimental re-assessment of the liquid miscibility gapcitations
- 2023Decomposition of γ-Fe in 0.4C-1.8Si-2.8Mn-0.5Al steel during a continuous cooling process: A comparative study using in-situ HT-LSCM, DSC and dilatometrycitations
- 2023High-temperature oxidation of steel recycled from scrap: The role of tramp elements and their influence on oxidation behavior
- 2022High temperature thermodynamics of the Fe-C-Mn system; new experimental data for the Fe-C-10 and 20 wt.-% Mn system
- 2022Primary Carbide Formation in Tool Steelscitations
- 2022Evaluation of different alloying concepts to trace non-metallic inclusions by adding rare earths on a laboratory scalecitations
- 2022Selected metallurgical models for computationally efficient prediction of quality-related issues in continuous slab casting of steel
- 2022Experimental thermodynamics for improving CALPHAD optimizations at the Chair of Ferrous Metallurgy
- 2021Characterization of the gamma-loop in the Fe-P system by coupling DSC and HT-LSCM with complementary in-situ experimental techniquescitations
- 2020Study on the Possible Error Due to Matrix Interaction in Automated SEM/EDS Analysis of Nonmetallic Inclusions in Steel by Thermodynamics, Kinetics and Electrolytic Extractioncitations
- 2020Experimental Study of High Temperature Phase Equilibria in the Iron-Rich Part of the Fe-P and Fe-C-P Systemscitations
- 2020Investigation of Fe–C–Cr and Fe–C–Cr–Ni-based systems with the use of DTA and HT-LSCM methodscitations
- 2019High precious phase diagrams – a roadmap for a successful casting processing
- 2019Evaluation of AHSS concepts with a focus on the product properties and appropriate casting characteristics of Arvedi ESP thin slab casterscitations
- 2017The potential for grain refinement of a super austenitic stainless steel with a cerium grain refiner
- 2017Modeling Inclusion Formation during Solidification of Steelcitations
- 2017Influence of Silicon and Manganese on the Peritectic Range for Steel Alloys
- 2017Further development and validation of IDS by means of selected experiments
- 2016On the modelling of microsegregation in steels involving thermodynamic databases
Places of action
Organizations | Location | People |
---|
article
Influence of Silicon and Tramp Elements on the High-temperature Oxidation of Steel in Direct Casting and Rolling Processes
Abstract
Oxidation processes are unavoidable in continuous casting and further hot processing of steel. A deeper understanding of the occurring phenomena such as intergranular oxidation and liquid metal infiltration of grain boundaries is essential to continuously improve the quality of the products. In this study, oxidation experiments were performed with simultaneous thermal analysis for two thin slab casting and rolling applications under near-process conditions up to the point prior to the first reduction stage. The experiments were performed for two low-carbon steels contaminated with undesirable tramp elements (Cu,<br/>Sn, …). In addition, the two steels contain Silicon at different levels. The results show that for the “Endless Strip Production” process (ESP), intergranular oxidation is significantly less pronounced compared to a “Thin Slab Casting and Rolling process” with a gas-fired tunnel furnace (TSCR TF). Due to the short process time at high temperatures in the ESP process, hardly any liquid metal infiltration by copper appears. In low silicon steel, intergranular oxidation results from various oxides, and liquid metal infiltration appears simultaneously in the TSCR TF process. Furthermore, the yield loss from oxidation is significantly higher in the TSCR TF process. The change from a natural gas combustion atmosphere to a hydrogen combustion atmosphere further increases the oxidation rate and results in a higher mass loss.