People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Vähänissi, Ville
Aalto University
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (43/43 displayed)
- 2024(invited talk) Sulfur-hyperdoped silicon by ultrashort laser processing
- 2024Contactless analysis of surface passivation and charge transfer at the TiO 2-Si interfacecitations
- 2024Contactless analysis of surface passivation and charge transfer at the TiO 2-Si interfacecitations
- 2024Impact of post-ion implantation annealing on Se-hyperdoped Gecitations
- 2024Impact of post-ion implantation annealing on Se-hyperdoped Gecitations
- 2024Bridging the gap between surface physics and photonicscitations
- 2024Contactless analysis of surface passivation and charge transfer at the TiO2-Si interfacecitations
- 2024(poster) ALD SiO2 provides efficient Ge surface passivation with a tailorable charge polarity
- 2024(poster) ALD SiO2 provides efficient Ge surface passivation with a tailorable charge polarity
- 2023Surface passivation of Germanium with ALD Al2O3: Impact of Composition and Crystallinity of GeOx Interlayercitations
- 2023(oral talk) Effective carrier lifetime in ultrashort pulse laser hyperdoped silicon: dopant concentration dependence and practical upper limits
- 2023Excellent Responsivity and Low Dark Current Obtained with Metal-Assisted Chemical Etched Si Photodiodecitations
- 2023Comparison of SiNx-based Surface Passivation Between Germanium and Siliconcitations
- 2023Plasma-enhanced atomic layer deposited SiO2 enables positive thin film charge and surface recombination velocity of 1.3 cm/s on germaniumcitations
- 2023Chemical Excitation of Silicon Photoconductors by Metal-Assisted Chemical Etchingcitations
- 2023Chemical Excitation of Silicon Photoconductors by Metal-Assisted Chemical Etchingcitations
- 2023Status report on emerging photovoltaicscitations
- 2023Atomic Layer Deposition of Titanium Oxide-Based Films for Semiconductor Applications–Effects of Precursor and Operating Conditionscitations
- 2023Quantifying the Impact of Al Deposition Method on Underlying Al2O3/Si Interface Qualitycitations
- 2023Is Carrier Mobility a Limiting Factor for Charge Transfer in Tio2/Si Devices? A Study by Transient Reflectance Spectroscopycitations
- 2022Electron Injection in Metal Assisted Chemical Etching as a Fundamental Mechanism for Electroless Electricity Generationcitations
- 2022Electron Injection in Metal Assisted Chemical Etching as a Fundamental Mechanism for Electroless Electricity Generationcitations
- 2022Perspectives on Black Silicon in Semiconductor Manufacturing: Experimental Comparison of Plasma Etching, MACE and Fs-Laser Etchingcitations
- 2022Millisecond-Level Minority Carrier Lifetime in Femtosecond Laser-Textured Black Siliconcitations
- 2022(oral talk) Compatibility of Al-neal in processing of Si devices with Al2O3 layer
- 2021Efficient photon capture on germanium surfaces using industrially feasible nanostructure formationcitations
- 2021Al-neal Degrades Al2O3 Passivation of Silicon Surfacecitations
- 2020Modeling Field-effect in Black Silicon and its Impact on Device Performancecitations
- 2020Impact of doping and silicon substrate resistivity on the blistering of atomic-layer-deposited aluminium oxidecitations
- 2019Effect of MACE Parameters on Electrical and Optical Properties of ALD Passivated Black Siliconcitations
- 2019Compatibility of 3-D Printed Devices in Cleanroom Environments for Semiconductor Processingcitations
- 2019Compatibility of 3-D Printed Devices in Cleanroom Environments for Semiconductor Processingcitations
- 2019Passivation of Detector‐Grade FZ‐Si with ALD‐Grown Aluminium Oxidecitations
- 2018Elucidation of Iron Gettering Mechanisms in Boron-Implanted Silicon Solar Cellscitations
- 2018Rapid thermal anneal activates light induced degradation due to copper redistributioncitations
- 2017Electronic Quality Improvement of Highly Defective Quasi-Mono Silicon Material by Phosphorus Diffusion Getteringcitations
- 2017Toward Effective Gettering in Boron-Implanted Silicon Solar Cellscitations
- 2017Full recovery of red zone in p-type high-performance multicrystalline siliconcitations
- 2017Surface passivation of black silicon phosphorus emitters with atomic layer deposited SiO2/Al2O3 stackscitations
- 2016Finite- vs. infinite-source emitters in silicon photovoltaicscitations
- 2014Iron Precipitation upon Gettering in Phosphorus-Implanted Czochralski Silicon and its Impact on Solar Cell Performancecitations
- 2013Passivation of black silicon boron emitters with atomic layer deposited aluminum oxidecitations
- 2008Metallization of Polymer Substrates for Flexible Electronics
Places of action
Organizations | Location | People |
---|
document
(poster) ALD SiO2 provides efficient Ge surface passivation with a tailorable charge polarity
Abstract
Atomic layer deposited (ALD) thin films have proven to be a highly effective method to reduce electronic recombination losses caused by defects present at the Si surfaces. Likewise, germanium (Ge) surfaces suffer from the same recombination problem and indeed, various ALD-based surface passivation schemes have been tried recently on them as well. The current methods utilize mainly so-called field effect passivation based on the negative fixed charge present in the film, such as aluminum oxide (Al2O3). The fixed charge induces an electric field to the vicinity of the substrate surface and thus prevents surface recombination by repelling electrons away from the surface. The negative charge can, however, be detrimental for certain applications. Therefore, there is a motivation to find a material which provides either a positive fixed charge or even better the ability to tailor the charge polarity.<br/>In this work we propose plasma-enhanced atomic layer deposited (PE-ALD) silicon oxide (SiO2) layers as a positive charge containing material for passivation of Ge surfaces and apply them as further charge tailoring interlayers for Ge/Al2O3 interfaces, as was demonstrated previously for Si/Al2O3 interfaces. First, we study 10 nm thick PE-ALD SiO2 films on n-type single-crystalline Ge wafers from which the charge polarity is determined. Next, the impact of PE-ALD SiO2 layers at Ge/Al2O3 interface is studied by varying the SiO2 interlayer thickness in the range of 1-20 nm. The passivation quality is monitored by measuring the minority carrier lifetime (τeff) and the thin film charge (Qtot) is determined from contactless capacitance-voltage (C-V) measurement.<br/>The results demonstrate that a bare PE-ALD SiO2 film provides lifetimes in a similar range (> 1 ms) as previous state-of-the-art Ge surface passivation schemes. Surface recombination is seen to increase when depositing negative corona charge at the surface (i.e. effective neutralization of fixed charge) indicating the formation of positive charge on the Ge/SiO2 interface. Figure 1 presents both the τeff and the Qtot obtained with an SiO2 interlayer with varying nominal thickness at Ge/Al2O3 interface. C-V measurements show that ALD SiO2 interlayers at the Ge/Al2O3 interface allow us to tailor the effective charge polarity from negative to positive by gradually increasing the SiO2 layer thickness from ultrathin to thicker layers. Changes in the interlayer thickness at the Ge/Al2O3 interface caused a shift from negative effective charge to positive as the thickness of SiO2 increased. This also influences the τeff measured from these samples, implying an altering presence of field-effect passivation.<br/>