People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Mcgarrigle, Cormac
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (11/11 displayed)
- 2022Influence of extrusion parameters on filled polyphenylsulfone tufting yarns on open-hole tensile strengthcitations
- 2022Characterization of continuous carbon fibre reinforced 3D printed polymer composites with varying fibre volume fractionscitations
- 2022Elastic Modulus and Flatwise (Through-Thickness) Tensile Strength of Continuous Carbon Fibre Reinforced 3D Printed Polymer Compositescitations
- 2021Comparison of Properties and Bead Geometry in MIG and CMT Single Layer Samples for WAAM Applicationscitations
- 2021Influence of Binder Float Length on the Out-of-Plane and Axial Impact Performance of 3D Woven Compositescitations
- 2021Thread-stripping test procedures leading to factors of safety data for friction-drilled holes in thin-section aluminium alloycitations
- 2020Improved crush energy absorption in 3D woven composites by pick density modificationcitations
- 2019Influence of Textile Architecture on the Mechanical Properties of 3D Woven Carbon Composites
- 2019Comparative studies of structure property relationship between glass/epoxy and carbon/epoxy 3D woven composites
- 2019Energy Absorption Mechanisms in Layer-to-Layer 3D Woven Composites
- 2019Improved Energy Absorption in 3D Woven Composites by Weave Parameter Manipulationcitations
Places of action
Organizations | Location | People |
---|
document
Influence of Textile Architecture on the Mechanical Properties of 3D Woven Carbon Composites
Abstract
The application of 3D woven composites in advanced structural components is limited by a lack of understanding of the influence of weaving parameters on the final architecture and mechanical properties of composites. This paper investigates the effect of fundamental and easily adjustable weave parameters (pick density and float length) on the mechanical properties (tension, compression and flexure) in 3D woven warp interlock layer-to-layer carbon/epoxy composite structures. The purpose of this paper is to establish a link between the textile and composite performance within this 3D weave architecture. The 3D fabrics, manufactured using a Jacquard loom, are fabricated in three different pick densities: 4, 10 & 16 wefts/cm, with a constant end density of 12 warps/cm from T700S-50C-12k carbon fibre. The pick density with the best mechanical properties is then used for the float length change iteration. The aim is to keep end and pick densities constant in the two float length variation specimens. The mechanical properties of the specimens are affected by the fibre content, tow waviness, misalignment of the load carrying tows and the distribution/size of resin rich areas. This paper depicts a link between the pick density/float length, mechanical properties and failure mechanisms in 3D woven layer-to-layer carbon/epoxy composites.