People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Stephens, Ifan Erfyl Lester
Imperial College London
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (10/10 displayed)
- 2018Scalable Synthesis of Carbon-Supported Platinum–Lanthanide and −Rare-Earth Alloys for Oxygen Reductioncitations
- 2017New Platinum Alloy Catalysts for Oxygen Electroreduction Based on Alkaline Earth Metalscitations
- 2016Exploring the Lanthanide Contraction to Tune the Activity and Stability of Pt
- 2015Synchrotron Based Structural Investigations of Mass-Selected PtxGd Nanoparticles and a Gd/Pt(111) Single Crystal for Electrochemical Oxygen Reduction
- 2015Controlling the Activity and Stability of Pt-Based Electrocatalysts By Means of the Lanthanide Contraction
- 2015What Is the Optimum Strain for Pt Alloys for Oxygen Electroreduction?
- 2014Oxygen Evolution on Model Well-Characterised Mass-Selected Nanoparticles of RuOx
- 2014Understanding the Oxygen Reduction Reaction on a Y/Pt(111) Single Crystal
- 2014Iron-Treated NiO as a Highly Transparent p-Type Protection Layer for Efficient Si-Based Photoanodescitations
- 2011Tuning the Activity of Pt(111) for Oxygen Electroreduction by Subsurface Alloyingcitations
Places of action
Organizations | Location | People |
---|
conferencepaper
Oxygen Evolution on Model Well-Characterised Mass-Selected Nanoparticles of RuOx
Abstract
In recent years, hydrogen production from polymer electrolyte membrane (PEM) electrolysis has attracted increasingly interest in the development of a clean/ CO2 free technology for energy storage [1]. The majority of the efficiency losses are at the anode [2], where oxygen is evolved, according to the reaction: 2H2O --> O2 + 4H+ + 4e- The most active and widely used catalysts for the oxygen evolution reaction (OER) are RuOx based materials. However, RuOx corrodes under reaction conditions. Moreover, Ru is very expensive and scarce [3]. In the current investigation, we focus on the evaluation of (a) oxygen evolution activity and (b) corrosion of well defined, mass selected Ru nanoparticles as a function of size and shape. We adapt a methodology previously used in our laboratory to study to investigate the oxygen reduction reaction [4]. The size selected electrocatalysts are prepared using an ultra-high-vacuum (UHV) compatible technique where nanoparticles are aggregated in a magnetron sputter source. This technique has distinct advantages, as it results in a high degree of control over critical parameters such as particle size, coverage and density [5]. By investigating such well-defined catalysts, we can improve our understanding of the relationship between catalyst structure and reactivity. The catalysts are formed from a ruthenium target, deposited under vacuum directly onto a glassy carbon or Au(111) electrode and then oxidized in furnace at 400 °C under 1 bar oxygen. The structure and composition are tested ex-situ before and after annealing using X-ray Photoelectron Spectroscopy (XPS), high resolution Transmission Electron Microscopy (HR-TEM) and Scanning Electron Microscopy (SEM). Electrochemical activity and stability are tested ex-situ in a Rotating Ring Disk Electrode set-up [6]. Furthermore, Electrochemical Scanning Tunnelling Microscopy (EC-STM) is used to directly observe the catalyst dissolution under reaction conditions. The EC-STM images are acquired in Ar saturated 0,05 M H2SO4, while the ...