People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Heikkilä, Pirjo
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (29/29 displayed)
- 2023Nano-scale nonwoven fabrics by electrospinning of polylactic acid
- 2022Comparison of the Growth and Thermal Properties of Nonwoven Polymers after Atomic Layer Deposition and Vapor Phase Infiltration
- 2021Comparison of the growth and thermal properties of nonwoven polymers after atomic layer deposition and vapor phase infiltrationcitations
- 2018Airborne Dust from Mechanically Recycled Cotton during Ring Spinning
- 2018Atomic layer deposition of Ti-Nb-O thin films onto electrospun fibers for fibrous and tubular catalyst support structurescitations
- 2017Electrospun sheet materials from CA, PES and PLLA as supports for ALD coating
- 2016Fibrous and tubular support materials by electrospinning and atomic layer deposition (ALD) for PEM fuel cells for automotive MEAs
- 2015ALD deposition of core-shell structures onto electrospun carbon webs for PEM fuel cell MEAs
- 2015Fibrous and tubular support materials using in catalyst support materials for low-Pt PEM fuel cells for automotive MEAs
- 2015The effect of physical adhesion promotion treatments on interfacial adhesion in cellulose-epoxy
- 2015Fibrous and tubular structures for PEMFC catalyst supports combining electrospinning, heat treatments and atomic layer deposition (ALD)
- 2014Core-shell carbon-ceramic fibres by electrospinning and atomic layer deposition (ALD)
- 2014Functional nonwovens for medical applications
- 2014Functional nonwovens for medical applications
- 2014ALD thin films for PEM fuel cells for automotive MEAs
- 2014ALD materials in catalyst support materials on PEM fuel cells for automotive MEAs
- 2014Atomic and molecular layer deposition for surface modificationcitations
- 2013Sustainable Nonwoven Materials by Foam Forming Using Cellulosic Fibres and Recycled Materials
- 2013Atomic and molecular layer deposition for surface modification
- 2013Foam formed nonwoven materials and functionalizations of nonwovens within neoweb project
- 2013Core-shell carbon-ceramic fibres by electrospinning and atomic layer deposition (ALD) for fuel cell catalyst supports
- 2012Preparation of carbon nanotube embedded in polyacrylonitrile (PAN) nanofibre composites by electrospinning processcitations
- 2012Sub-micron and nanosized specialty fibres by electrospinning
- 2012High surface area nanostructured tubes prepared by dissolution of ALD-coated electrospun fiberscitations
- 2011Press felts coated with electrospun nanofibres
- 2011Tubes by fibre templates with two nanofabrication processes electrospinning and atomic layer deposition
- 2011Atomic layer deposition in food packaging and barrier coatings
- 2009Nanofibre filters in aerosol filtration
- 2006Poly(vinyl alcohol) and polyamide-66 nanocomposites prepared by electrospinningcitations
Places of action
Organizations | Location | People |
---|
document
Sub-micron and nanosized specialty fibres by electrospinning
Abstract
Electrospinning is a method that can be used in preparation of many kind of functional and technical fibre in submicron and nanosized range. Functionality can be obtained, for example, by adding different kind of fillers into electrospinning and/or by heat treatment of electrospun fibres. We have demonstrated preparation of precursor fibres for carbon and ceramic (TiO2 and BN) fibres from different substances. Precursors for carbonization have been prepared using polyacrylonitrile (PAN), PAN-carbon nanofibre (CNT) composites, as well as lignin. Selected precursors were carbonized. TiO2 fibres were prepared using fluidic titanates in electrospinning with polyvinyl pyrrolidone (PVP) and forming TiO2 in heat-treatment of blend fibres in O-containingatmosphere. For BN fibre preparation B2O3 powder was mixed into electrospinning solution with different polymers. Such precursor fibres could be transformed into BN by heat-treatment in N-containing atmosphere. Properties of electrospun fibres depend on the solutions properties as well as electrospinning conditions. In composite fibre production containing solid filler the major challenge is the dispersion of filler particles. When final fibrous product is obtained using thermal treatment even more variables are affecting the properties. In this presentation precursor processing challenges and properties of selected specialty fibresare discussed. Examples of precursors and heat-treated fibres are presented in Figure 1.