People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Heikkilä, Pirjo
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (29/29 displayed)
- 2023Nano-scale nonwoven fabrics by electrospinning of polylactic acid
- 2022Comparison of the Growth and Thermal Properties of Nonwoven Polymers after Atomic Layer Deposition and Vapor Phase Infiltration
- 2021Comparison of the growth and thermal properties of nonwoven polymers after atomic layer deposition and vapor phase infiltrationcitations
- 2018Airborne Dust from Mechanically Recycled Cotton during Ring Spinning
- 2018Atomic layer deposition of Ti-Nb-O thin films onto electrospun fibers for fibrous and tubular catalyst support structurescitations
- 2017Electrospun sheet materials from CA, PES and PLLA as supports for ALD coating
- 2016Fibrous and tubular support materials by electrospinning and atomic layer deposition (ALD) for PEM fuel cells for automotive MEAs
- 2015ALD deposition of core-shell structures onto electrospun carbon webs for PEM fuel cell MEAs
- 2015Fibrous and tubular support materials using in catalyst support materials for low-Pt PEM fuel cells for automotive MEAs
- 2015The effect of physical adhesion promotion treatments on interfacial adhesion in cellulose-epoxy
- 2015Fibrous and tubular structures for PEMFC catalyst supports combining electrospinning, heat treatments and atomic layer deposition (ALD)
- 2014Core-shell carbon-ceramic fibres by electrospinning and atomic layer deposition (ALD)
- 2014Functional nonwovens for medical applications
- 2014Functional nonwovens for medical applications
- 2014ALD thin films for PEM fuel cells for automotive MEAs
- 2014ALD materials in catalyst support materials on PEM fuel cells for automotive MEAs
- 2014Atomic and molecular layer deposition for surface modificationcitations
- 2013Sustainable Nonwoven Materials by Foam Forming Using Cellulosic Fibres and Recycled Materials
- 2013Atomic and molecular layer deposition for surface modification
- 2013Foam formed nonwoven materials and functionalizations of nonwovens within neoweb project
- 2013Core-shell carbon-ceramic fibres by electrospinning and atomic layer deposition (ALD) for fuel cell catalyst supports
- 2012Preparation of carbon nanotube embedded in polyacrylonitrile (PAN) nanofibre composites by electrospinning processcitations
- 2012Sub-micron and nanosized specialty fibres by electrospinning
- 2012High surface area nanostructured tubes prepared by dissolution of ALD-coated electrospun fiberscitations
- 2011Press felts coated with electrospun nanofibres
- 2011Tubes by fibre templates with two nanofabrication processes electrospinning and atomic layer deposition
- 2011Atomic layer deposition in food packaging and barrier coatings
- 2009Nanofibre filters in aerosol filtration
- 2006Poly(vinyl alcohol) and polyamide-66 nanocomposites prepared by electrospinningcitations
Places of action
Organizations | Location | People |
---|
document
Functional nonwovens for medical applications
Abstract
Nonwovens are versatile material group suitable forvarious medical applications including. Properties ofnonwoven materials can be adjusted by functionalizationwith various surface treatment and coating technologies.Printing methods e.g. can be used in functionalization ofselected areas of nonwoven material. The foam coatingtechnology enables application of thin functionalcoatings. Atomic layer deposition (ALD) and solgeltechniques can be used to adjust surface properties withinorganic coatings also in nanoscale. In thispresentation we will review some examples of nonwovensfunctionalization's with above mentioned technologies. Weused screen printing method in order to prepare a medicalcloth for application medical aids to skin. Creamtransfer onto skin was tested and material showed promisee.g. for use for controlled dosage of medical creams. Weused foam coating to make functional coating ontocellulosic fibre based nonwoven materials with polyvinylalcohol (PVA)-nanofibrillated cellulose (NFC)-ZnO/TiO2-solution. Coating increased the strength of nonwovenmaterial compared to non-coated material most likely dueto NFC and PVA, while metal oxides made itbacteriostatic. This kind of material could be used e.g.in wound care and bandage applications. Surfaceproperties of nonwovens were adjusted by ALD and sol-gelcoatings. Hydrophobicity of coated nonwovens depended onthe used coating methods, material, coating thickness andsurface roughness. Prospective applications for metaloxide functionalized textiles include with water, oil andsoil repellent and antimicrobial medical textiles.