People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Zawodzinski, T. A., Jr.
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (3/3 displayed)
Places of action
Organizations | Location | People |
---|
document
Porosimetric study of catalyst layer of polymer electrolyte fuel cells.
Abstract
The porosimetry of the catalyst layer made by the 'decal process' was studied using mercury porosirnetry. The comparison of the porosimetric profiles between the carbon powder and the catalyst supported on carbon suggests that the loading of the catalyst onto the Vulcan XC-72 carbon changes the porosimetry of the catalyst/carbon. The porosimetry of the catalyst layer depends on the catalyst used and the Nafion content. Boiling the catalyst layer effectively increases the pore area and the porosity of the catalyst layer. The correlation of porosimetric data with performance of catalyst layers suggests that the Nafion content in catalyst layers plays a vital role on the structure of catalyst layer such as pore size and pore distribution and further influences the performance of PE:FC.