People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Quinn, Justin
University of Ulster
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (10/10 displayed)
- 2022Powder Reuse in Laser-Based Powder Bed Fusion of Ti6Al4V—Changes in Mechanical Properties during a Powder Top-Up Regimecitations
- 2021A Simplified Thermal Approximation Method to include the effects of Marangoni Convection in the melt pools of processes that involve moving point heat sourcescitations
- 2021Analysis of spatter removal by sieving during a powder-bed fusion manufacturing campaign in grade 23 titanium alloycitations
- 2021Comparison of Properties and Bead Geometry in MIG and CMT Single Layer Samples for WAAM Applicationscitations
- 2021Thread-stripping test procedures leading to factors of safety data for friction-drilled holes in thin-section aluminium alloycitations
- 2020Improved crush energy absorption in 3D woven composites by pick density modificationcitations
- 2020Reuse of grade 23 Ti6Al4V powder during the laser-based powder bed fusion processcitations
- 2018A Review of Powder Bed Fusion for Additively Manufactured Ti-6wt.%Al-4wt.%V
- 2018A REVIEW OF THERMAL MODELLING FOR METAL ADDITIVE MANUFACTURING PROCESSES: BASIC ANALYTICAL MODELS TO STATE-OF-THE-ART SOFTWARE PACKAGES.
- 2010Analytical Elastic Stiffness Model for 3D Woven Orthogonal Interlock Compositescitations
Places of action
Organizations | Location | People |
---|
document
A Review of Powder Bed Fusion for Additively Manufactured Ti-6wt.%Al-4wt.%V
Abstract
Selective Laser Melting (SLM) a form Powder Bed Fusion (PBF), is a type of Additive Manufacturing (AM) process which has the ability to manufacture complex geometric parts that cannot be produced by traditional means. Ti6AL4V is an α + β titanium alloy and is commonly used within the medical and aerospace industries. It is one of the few technical metal alloys that can be processed by PBF. This contribution will review the issues related to microstructure formation, residual stress, and porosity formation that can arise within Ti6Al4V parts produced by the PBF process. In particular, the influence of the manufacturing process parameters and the presence of defects on the mechanical properties will be reviewed.High thermal gradients and rapid solidification of the molten powder can lead to the development of a martensitic microstructure and other specific defects within the as-built part. Defects have a negative impact upon mechanical properties. Porosity, balling, lack of fusion and delamination are common examples of process-specific defects. The requirement for secondary processing of the additively manufactured components to improve mechanical properties will be reviewed with a particular focus on the requirement for the Hot Isostatic Pressing (HIP) processing.