Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Pallotta, Hermes

  • Google
  • 1
  • 3
  • 0

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2024Assessing isometric hip strength in young professional soccer players: Does hip-flexion angle matter?citations

Places of action

Chart of shared publication
Taylor, Jonathan
1 / 3 shared
Hunter, Melissa
1 / 1 shared
Wright, Matthew
1 / 11 shared
Chart of publication period
2024

Co-Authors (by relevance)

  • Taylor, Jonathan
  • Hunter, Melissa
  • Wright, Matthew
OrganizationsLocationPeople

document

Assessing isometric hip strength in young professional soccer players: Does hip-flexion angle matter?

  • Taylor, Jonathan
  • Pallotta, Hermes
  • Hunter, Melissa
  • Wright, Matthew
Abstract

Introduction: Hip and groin injuries are commonplace in soccer and often result in considerable time-loss [1]. The hip adductors contribute to sprint, jump, and change of direction [2], and deficits in isometric hip adductor strength are associated with groin injuries [3]. Similarly, hip abductor strength is associated with stability and landing mechanics [4], and strength deficits may be a risk factor for lower limb injuries [5]. This underlines the value of assessing isometric hip strength. Short and long-lever hip strength has been reported at various hip flexion angles [6-8], yet comparison between angles is lacking. This study assessed the effects of hip flexion angle on peak force production and relationship between angles in soccer players. Methods: Twenty-four soccer players (Age 17.4 ± 0.8 years) completed 3 testing sessions during which isometric hip strength (i.e., adduction and abduction) was assessed at 45-, 60-, and 90-degree angles, using a fixed frame-dynamometer (Vald ForceFrame). Players completed testing in a counterbalanced order across a 2-week period and were in a similar physiological state for each. Three 5-s maximal voluntary contractions were completed in each position with a 30-s rest between trials. Peak force achieved across the trials for each limb was retained for analysis. A robust repeated measures ANOVA was used to detect changes between positions, with significance set at P<0.05 and Pearson’s correlations used to quantify associations. Results: Significant mean differences were observed in peak adduction force between all positions. Mean differences were -25.9 ±23.1N (±95% confidence limit) and -33.4±19.1N for the right and left limbs, respectively, between 45- and 60-degrees; 46.8±23.2N and 32.6±19.9N for the right and left limbs, respectively, between 45- and 90 degrees; and 72.7±22.9N and 66.1±19.9N for the right and left limbs, respectively, between 60- and 90-degrees. Significant mean differences were observed in peak abduction force between 45- and 90- degrees, and 60 and 90-degrees. Mean differences were 32.2±20.8N and 25.7±21.1N for the right and left limbs, respectively between 45- and 90-degrees; and 42.4±20.9N and 41.6±21.3N for the right and left limbs, between the 60- and 90-degrees. Very large correlations were observed between adductor force at 45- and 90- degrees and force at 60 degrees (r = 0.77 to 0.87) and similarly for abductor force (r = 0.77 to 0.79) Conclusion: Peak adduction force varies between short-lever test positions, while peak abduction force varies between a 90-degree and other hip flexion angles. However, very large associations between peak adduction and abduction force at different hip flexion angles existed.

Topics
  • impedance spectroscopy
  • strength
  • hot isostatic pressing