Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Hermanns, Roy

  • Google
  • 9
  • 21
  • 3

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (9/9 displayed)

  • 2024The Heat Flux Method for hybrid iron–methane–air flames3citations
  • 2023Iron Powders as Energy Carrier for Storage and Conversion of Renewablescitations
  • 2023Experimental Research On Iron Combustion At Eindhoven University of Technologycitations
  • 2023Experimental Research On Iron Combustion At Eindhoven University of Technologycitations
  • 2023The Heat Flux Method adapted for hybrid iron-methane-air flamescitations
  • 2023Characterising Iron Powder Combustion using an Inverted Bunsen Flamecitations
  • 2023Characterising Iron Powder Combustion using an Inverted Bunsen Flamecitations
  • 2023Burning Velocity Measurements for Flat Hybrid Iron-Methane-Air Flamescitations
  • 2022Laminar burning velocity of hybrid methane-iron-air flamescitations

Places of action

Chart of shared publication
Bastiaans, Rob J. M.
6 / 9 shared
Hulsbos, Mark R.
6 / 6 shared
De Goey, Philip
8 / 25 shared
Shoshyn, Yuri L.
2 / 3 shared
Prasidha, Willie
2 / 10 shared
Prime, Helen
4 / 4 shared
Homan, Tess A. M.
1 / 2 shared
Finotello, Giulia
2 / 21 shared
Van Rooij, Niek E.
1 / 2 shared
Ning, Daoguan
2 / 4 shared
Abdallah, Muhammed
2 / 2 shared
Van Genderen, Marc
1 / 1 shared
Dam, Nico J.
1 / 1 shared
Spee, Tim
2 / 2 shared
Baigmohammadi, Mohammadreza
2 / 10 shared
Hameete, J.
2 / 2 shared
Rooij, Niek E. Van
1 / 1 shared
Homan, Tess
1 / 2 shared
Genderen, Marc Van
1 / 1 shared
Shoshin, Yuriy
2 / 7 shared
Dam, Nj Nico
1 / 2 shared
Chart of publication period
2024
2023
2022

Co-Authors (by relevance)

  • Bastiaans, Rob J. M.
  • Hulsbos, Mark R.
  • De Goey, Philip
  • Shoshyn, Yuri L.
  • Prasidha, Willie
  • Prime, Helen
  • Homan, Tess A. M.
  • Finotello, Giulia
  • Van Rooij, Niek E.
  • Ning, Daoguan
  • Abdallah, Muhammed
  • Van Genderen, Marc
  • Dam, Nico J.
  • Spee, Tim
  • Baigmohammadi, Mohammadreza
  • Hameete, J.
  • Rooij, Niek E. Van
  • Homan, Tess
  • Genderen, Marc Van
  • Shoshin, Yuriy
  • Dam, Nj Nico
OrganizationsLocationPeople

document

Experimental Research On Iron Combustion At Eindhoven University of Technology

  • Bastiaans, Rob J. M.
  • Prasidha, Willie
  • Prime, Helen
  • Hermanns, Roy
  • Finotello, Giulia
  • Rooij, Niek E. Van
  • Hulsbos, Mark R.
  • Homan, Tess
  • Genderen, Marc Van
  • De Goey, Philip
  • Shoshin, Yuriy
  • Ning, Daoguan
  • Dam, Nj Nico
  • Abdallah, Muhammed
  • Spee, Tim
  • Baigmohammadi, Mohammadreza
  • Hameete, J.
Abstract

The recent years, intensive experimental studies on iron combustion have been carried out by researchers of Power and Flow group of Eindhoven University of Technology. This work has been aimed on providing deep understanding of physical processes relevant to applications of iron powder as recyclable energy carrier for storing and transportation of “green energy”, namely, for energy generation by iron powder combustion within a so-called “dry” cycle. Research has been performed with different experimental setups designed and built to study iron flames of different levels of complexity, ranging from “fundamental” single particle and laminar aerosol flames to pilot designs of industrial burners. A brief review of these experimental studies and their results is provided in this paper.

Topics
  • impedance spectroscopy
  • combustion
  • iron
  • iron powder