Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Jamshidi, Kambiz

  • Google
  • 1
  • 10
  • 0

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2023Electro-optical co-integration platform for high-density hybrid systems - SILHOUETTEcitations

Places of action

Chart of shared publication
Lapteva, Margarita
1 / 1 shared
Catuneanu, Mircea-Traian
1 / 1 shared
Nieweglowski, Krzysztof
1 / 10 shared
Weyers, David
1 / 1 shared
Landwehr, Matthias
1 / 1 shared
Boenhardt, Sascha
1 / 1 shared
He, Menglong
1 / 1 shared
Vibhuti, Vinya
1 / 1 shared
Bock, Karlheinz
1 / 43 shared
Fell, Johann
1 / 1 shared
Chart of publication period
2023

Co-Authors (by relevance)

  • Lapteva, Margarita
  • Catuneanu, Mircea-Traian
  • Nieweglowski, Krzysztof
  • Weyers, David
  • Landwehr, Matthias
  • Boenhardt, Sascha
  • He, Menglong
  • Vibhuti, Vinya
  • Bock, Karlheinz
  • Fell, Johann
OrganizationsLocationPeople

document

Electro-optical co-integration platform for high-density hybrid systems - SILHOUETTE

  • Lapteva, Margarita
  • Catuneanu, Mircea-Traian
  • Nieweglowski, Krzysztof
  • Weyers, David
  • Landwehr, Matthias
  • Boenhardt, Sascha
  • He, Menglong
  • Vibhuti, Vinya
  • Jamshidi, Kambiz
  • Bock, Karlheinz
  • Fell, Johann
Abstract

<p>This paper introduces so called SILHOUETTE platform for electro-optical (E/O) co-integration for high-density hybrid systems. Need for parallel, flexible and scalable system integration approaches demanded by integrated photonics is explained. Platform concept based on co-design of SiN photonic processing unit (PPU), application specific integrated circuit (ASIC) and Si-interposer with optical function introduced by polymeric back end of line (BEOL) is shown. Design and functionality of individual components as well as their co-design is detailed. Processing of Si-interposer with electrical redistribution layer (RDL), pads as well as polymeric waveguides (WGs) and µ-mirrors via hybrid lithography is shown. PPU fabrication on 300 mm wafer with deposition and structuring of SiN for WGs, SiO<sub>2</sub> cladding and TiN for heaters is shown. Cu-RDL, pads and solder bumps are deposited for reflow assembly of PPU. Finally work is concluded and an outlook to future goals of consortium is provided.</p>

Topics
  • Deposition
  • density
  • impedance spectroscopy
  • tin
  • lithography