People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Österreicher, Johannes Albert
Austrian Institute of Technology
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (12/12 displayed)
- 2024Optimizing the Zn and Mg contents of Al–Zn–Mg wrought alloys for high strength and industrial-scale extrudabilitycitations
- 2024Differential scanning calorimetry of age-hardenable aluminium alloys: effects of sample preparation, experimental conditions, and baseline correctioncitations
- 2024In situ conductometry for studying the homogenization of Al-Mg-Si alloys and predicting extrudate grain structure through machine learning
- 2024Mechanisms of electrically assisted deformation of an Al–Mg alloy (AA5083-H111): Portevin–Le Chatelier phenotype transformation, suppression, and prolonged necking
- 2024Simultaneous laser ultrasonic measurement of sound velocities and thickness of plates using combined mode local acoustic spectroscopycitations
- 2024Parameter study of extrusion simulation and grain structure prediction for 6xxx alloys with varied Fe contentcitations
- 2023Tolerance of Al–Mg–Si Wrought Alloys for High Fe Contents: The Role of Effective Sicitations
- 2022Combined Cyclic Deformation and Artificial Ageing of an Al-Mg-Si Alloy
- 2022Electrically assisted forming
- 2022Analysis of second phase particles in metals using deep learning: Segmentation of nanoscale dispersoids in 6xxx series aluminium alloys (Al-Mg-Si)citations
- 2022Influence of different homogenization heat treatments on the microstructure and hot flow stress of the aluminum alloy AA6082citations
- 2017Quantitative prediction of the mechanical properties of precipitation hardened alloys with a special application to Al-Mg-Si
Places of action
Organizations | Location | People |
---|
article
Mechanisms of electrically assisted deformation of an Al–Mg alloy (AA5083-H111): Portevin–Le Chatelier phenotype transformation, suppression, and prolonged necking
Abstract
Aluminum-magnesium wrought alloys are well known for their advantageous properties and their application in various industries. However, the occurrence of the Portevin-Le Chatelier (PLC) effect leads to the formation of bands on the surface, thereby restricting the application of parts from Al-Mg alloys, primarily due to aesthetic concerns. Applying electrical pulses during deformation may not only improve the mechanical properties, moreover, it also affects the PLC effect. In this work, the properties of AA5083-H111 were investigated using standardized and electrically assisted tensile tests. Tensile behavior was assessed at room temperature, 250 degrees C, cryogenic conditions, and at two distinct electrically assisted conditions. We found that electrically assisted tensile testing leads to increased fracture strain compared to standard room temperature and cryogenic conditions. Furthermore, there was a transformation in PLC phenotypes, which included a partial suppression of the PLC effect. A spatio-temporal analysis of strain rate and strain highlights considerable differences in the occurrence of PLC bands and prolonged necking compared to standard room temperature testing. Furthermore, a modified dislocation pattern was observed using transmission electron microscopy.