People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Shepherd, Duncan Et
University of Birmingham
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (24/24 displayed)
- 2024Frequency and time dependent viscoelastic characterization of pediatric porcine brain tissue in compressioncitations
- 2022Bio-Tribo-Acoustic Emissions: Condition Monitoring of a Simulated Joint Articulationcitations
- 2022Long-term in vitro corrosion behavior of Zn-3Ag and Zn-3Ag-0.5Mg alloys considered for biodegradable implant applicationscitations
- 2022Surface Free Energy Dominates the Biological Interactions of Postprocessed Additively Manufactured Ti-6Al-4Vcitations
- 2021Surface finish of additively manufactured metalscitations
- 2021Investigation of the compressive viscoelastic properties of brain tissue under time and frequency dependent loading conditionscitations
- 2020Dynamic mechanical characterization and viscoelastic modeling of bovine brain tissuecitations
- 2020A method for the assessment of the coefficient of friction of articular cartilage and a replacement biomaterialcitations
- 2019Frequency dependent viscoelastic properties of porcine brain tissuecitations
- 2018The role of subchondral bone, and its histomorphology, on the dynamic viscoelasticity of cartilage, bone and osteochondral corescitations
- 2018Tailoring selective laser melting process for titanium drug-delivering implants with releasing micro-channelscitations
- 2017Crack growth in medical-grade silicone and polyurethane ether elastomerscitations
- 2016Design of a Dynamic External Finger Fixatorcitations
- 2015Frequency dependent viscoelastic properties of porcine bladdercitations
- 2015The evolution of polymer wear debris from total disc arthroplastycitations
- 2015Variation in viscoelastic properties of bovine articular cartilage below, up to and above healthy gait-relevant loading frequenciescitations
- 2014Viscoelastic properties of bovine knee joint articular cartilage : dependency on thickness and loading frequencycitations
- 2013Abrasive Water Jet Cutting (AWJC) of Co-Cr-Mo alloy investment castings in the medical device industry
- 2011Viscoelastic properties of the intervertebral disc and the effect of nucleus pulposus removalcitations
- 2010Effect of accelerated aging on the viscoelastic properties of Elast-Eon (TM): A polyurethane with soft poly(dimethylsiloxane) and poly(hexamethylene oxide) segmentscitations
- 2009Viscoelastic properties of bovine articular cartilage attached to subchondral bone at high frequenciescitations
- 2009Frequency dependence of viscoelastic properties of medical grade siliconescitations
- 2005A new design concept for wrist arthroplastycitations
- 2004A comparison of the torsional performance of stainless steel and titanium alloy tibial intramedullary nails: a clinically relevant approach
Places of action
Organizations | Location | People |
---|
document
Abrasive Water Jet Cutting (AWJC) of Co-Cr-Mo alloy investment castings in the medical device industry
Abstract
Investment castings (usually involving ceramic based shells) have traditionally been separated from the mould tree using an abrasive cutting operation. While material removal rates are relatively high, the process unfortunately suffers from poor accuracy control that often necessitates further finishing operations. Following an overview of key considerations in investment casting including tree configurations and gate profile, the paper details experimental work to investigate the feasibility of abrasive waterjet cutting (AWJC) as an alternative to grinding for component cut-off. The workpiece material was a high strength cobalt-chromium-molybdenum alloy (ASTM F-75) commonly used for orthopaedic implants. Preferred AWJC cutting parameters were established for material thicknesses up to 30 mm. Specimens of 13 mm and 30 mm thickness were cut through at maximum traverse speeds of 220 mm/min and 80 mm/min respectively. Abrasive grit embedment was observed primarily at the top surface and exit region of the cut. The effect of investment casting refractory shells on the AWJC process was examined. In addition, a comparative analysis of performance and cost with alternative cutting methods was also performed.