Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Saville, D. J.

  • Google
  • 1
  • 2
  • 0

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2000Stability of polymorphic forms of ranitidine hydrochloridecitations

Places of action

Chart of shared publication
Wu, V.
1 / 1 shared
Rades, Thomas
1 / 107 shared
Chart of publication period
2000

Co-Authors (by relevance)

  • Wu, V.
  • Rades, Thomas
OrganizationsLocationPeople

article

Stability of polymorphic forms of ranitidine hydrochloride

  • Wu, V.
  • Rades, Thomas
  • Saville, D. J.
Abstract

<p>Ranitidine-HCl can exist in two different polymorphic forms: form I (m.p. 134-140 °C) and form II (m.p. 140-144 °C). In the present study the stability of form I of ranitidine-HCl to a selection of powder pretreatments, to reflect conditions which might occur in manufacturing procedures, and also to a limited range of storage conditions was investigated. The original samples of form I and form II used were characterised by X-ray powder diffraction (XRPD), hot stage microscopy (HSM) and differential scanning calorimetry (DSC). A quantitative XRPD method for determining the fraction of form II in the presence of form I was used. XRPD data were analysed using regression techniques and artificial neural networks (ANN). The quantitative XRPD technique was then used to monitor the relative proportion of form II in each treated sample. Pretreatments of form I included (i) mixing with form II or with common excipients (ii) compression and grinding (iii) contact with solvents (followed by drying) before storage. Storage conditions involved three temperatures (20 °C, 30 °C, 42 °C) and three relative humidities (45% RH; 55% RH; 75% RH). Samples were stored for a period of 6 months. A limited factorial design was used. No increase in the form II:form I ratio was observed in the following pretreatment processes: introduction of form II nuclei into form I; introduction of excipients to form I; compression of form I powder at 5 and 15 tons; normal mixing and grinding processes; addition of isopropanol (IPA) or water/IPA mix followed by drying. In the pretreatment process where water was added to form I powder (with most or all of the powder dissolving), drying of the liquefied mass led to a mix of form I and form II. On storage at room temperature (20-30 °C), low relative humidity (45-55% RH), and in an air-tight container there was no increase in the form II:form I ratio. Storage of form I/form II mixes, particularly at high humidity, resulted in a preferential loss of form II (compared to form I). Loss was greater at 30 °C/75% RH than at 20 °C/75% RH. Form II was also preferentially lost under low humidity conditions created by a saturated solution of potassium carbonate (45% RH) at the elevated temperature of 42 °C. This environment was shown to be acidic.</p>

Topics
  • grinding
  • Potassium
  • differential scanning calorimetry
  • drying
  • microscopy
  • dissolving