People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Wouters, Benny
Vrije Universiteit Brussel
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (13/13 displayed)
- 2024On the Interaction between PEDOT:PSS Dispersions and Aluminium Electrodes for Solid State Electrolytic Capacitorscitations
- 2024Application of operando ORP-EIS for the in-situ monitoring of acid anion incorporation during anodizingcitations
- 2024Effect of Impregnation of PEDOT:PSS in Etched Aluminium Electrodes on the Performance of Solid State Electrolytic Capacitors
- 2024Study of Solid-State Diffusion Impedance in Li-Ion Batteries Using Parallel-Diffusion Warburg Modelcitations
- 2023Operando odd random phase electrochemical impedance spectroscopy (ORP-EIS) for in-situ monitoring of the Zr-based conversion coating growth in the presence of (in)organic additivescitations
- 2023Differentiating between the diffusion of water and ions from aqueous electrolytes in organic coatings using an integrated spectro-electrochemical techniquecitations
- 2023Electrochemical impedance spectroscopy beyond linearity and stationarity - a critical reviewcitations
- 2023The time-varying effect of thiourea on the copper electroplating process with industrial copper concentrationscitations
- 2022An ex situ and operando analysis of thiourea consumption and activity during a simulated copper electrorefining processcitations
- 2021Best Linear Time-Varying Approximation of a General Class of Nonlinear Time-Varying Systemscitations
- 2021An operando ORP-EIS study of the copper reduction reaction supported by thiourea and chlorides as electrorefining additivescitations
- 2020EIS comparative study and critical Equivalent Electrical Circuit (EEC) analysis of the native oxide layer of additive manufactured and wrought 316L stainless steelcitations
- 2019Characterisation of rapid water uptake in model coatings using instantaneous impedance
Places of action
Organizations | Location | People |
---|
article
Effect of Impregnation of PEDOT:PSS in Etched Aluminium Electrodes on the Performance of Solid State Electrolytic Capacitors
Abstract
Electrolytic capacitors store larger amounts of energy thanks to their thin dielectric layers and enlarged surface area. However, the benefits of using a liquid electrolyte are at the expense of the possibility of leakage, evaporation, or rupture of the device over time. As a solution, solid electrolytes, such as conductive polymers, substitute the liquid ones decreasing the internal resistance and enlarging the lifetime of these devices. PEDOT:PSS is a widely used conductive polymer in the formation of solid electrolytic capacitors. However, using the enlarged surface of the porous electrodes efficiently requires industrial processes, the efficacy of which has not been explored. In this work, porous aluminium electrodes with dielectric layers of different thicknesses were coated with PEDOT:PSS at different levels of doping in order to study the efficiency of the production of solid electrolytic capacitors in industry. The combination of odd random phase electrochemical impedance spectroscopy (ORP-EIS) with surface characterization techniques (SEM-EDX, GDOES) formed a methodology that allowed the study of both the electrical properties and the level of impregnation for these model systems. All samples consisting of a porous aluminium electrode with an amount of PEDOT:PSS deposited on top resulted in an inefficient degree of penetration between the two electrodes. However, the electrochemical analysis proved that the use of dopants produces systems with the highest capacitive properties. Consequently, the evolution towards better solid electrolytic capacitors does not rely solely on the proper coverage of the porous electrodes, but on the proper electrical properties of the PEDOT:PSS within the pores.