Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Mosleh, Yasmine

  • Google
  • 33
  • 51
  • 113

Delft University of Technology

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (33/33 displayed)

  • 2024Time to failure analysis of wood adhesivescitations
  • 2024Interlaminar fracture behaviour of emerging laminated-pultruded CFRP plates for wind turbine blades3citations
  • 2024Effect Of Moisture Cycling Duration And Temperature On The Strengthening And Stiffening Of Cycled Flax Fibrescitations
  • 2024Time to failure analysis of wood adhesives: a non-linear approach based on chemical reaction kineticscitations
  • 2024Designing Stiff And Tough Biocomposites By Hybridization Of Flax And Silk Fibrescitations
  • 2024FLAx-REinforced Aluminum (FLARE)2citations
  • 2024Pre-straining as an effective strategy to mitigate ratcheting during fatigue in flax FRP composites for structural applicationscitations
  • 2024Enhancing Fatigue Performance Of Structural Biocomposites By Pre-Straining And Pre-Creeping Methodscitations
  • 2024Interlaminar Fracture Behaviour Of Emerging Laminated-Pultruded Cfrp Plates For Wind Turbine Blades Under Different Loading Modescitations
  • 2023Ductile woven silk fibre thermoplastic composites with quasi-isotropic strength16citations
  • 2023Damage tolerance in ductile woven silk fibre thermoplastic compositescitations
  • 2023Damage tolerance in ductile woven silk fibre thermoplastic compositescitations
  • 2023Flax fibre metal laminates (FLARE): A bio-based FML alternative combining impact resistance and vibration damping?citations
  • 2023Effects of different joint wall lengths on in-plane compression properties of 3D braided jute/epoxy composite honeycombs1citations
  • 2023Highly Impact-Resistant Silk Fiber Thermoplastic Composites1citations
  • 2022Smart material and design solutions for protective headgears in linear and oblique impacts: Column/matrix composite liner to mitigate rotational accelerations4citations
  • 2022Smart material and design solutions for protective headgears in linear and oblique impacts4citations
  • 2022Prediction of the equilibrium moisture content based on the chemical composition and crystallinity of natural fibres30citations
  • 2021Ductile woven silk fibre thermoplastic composites with quasi-isotropic strength16citations
  • 2021The photostability and peel strength of ethylene butyl acrylate copolymer blends for use in conservation of cultural heritage3citations
  • 2020The Influence of Loading, Temperature and Relative Humidity on Adhesives for Canvas Lining6citations
  • 2020The Influence of Loading, Temperature and Relative Humidity on Adhesives for Canvas Lining6citations
  • 2018Effect of polymer foam anisotropy on energy absorption during combined shear-compression loadcitations
  • 2018Anisotropic composite structure, liner and helmet comprising such a structure and use of and method of producing such a structurecitations
  • 2018Decoupling shear and compression properties in composite polymer foams by introducing anisotropy at macro levelcitations
  • 2015Penetration impact resistance of tough novel steel fibre-reinforced polymer compositescitations
  • 2015Penetration impact resistance of novel tough steel fibre-reinforced polymer composites21citations
  • 2014TPU/PCL/nanomagnetite ternary shape memory composites: Studies on their Thermal, Dynamic-Mechanical, Rheological, and Electrical Propertiescitations
  • 2014Combined Shear-Compression Test to Characterize Foams under Oblique Loading for Bicycle Helmetscitations
  • 2014Characterisation of EPS Foams under Combined Shear-Compression Loadingcitations
  • 2014Combined shear-compression test to characerize foams under oblique loading for bicycle helmetscitations
  • 2010Efficient Dispersion of Magnetite Nanoparticles in the Polyurethane Matrix Through Solution Mixing and Investigation of the Nanocomposite Propertiescitations
  • 2010Efficient dispersion of magnetite nanoparticles in polyurethane matrix through solution mixing and investigation of the nanocomposite propertiescitations

Places of action

Chart of shared publication
Gard, Wolfgang
1 / 4 shared
Richter, K.
2 / 15 shared
Clerc, G.
2 / 2 shared
Van De Kuilen, Jan-Willem
1 / 10 shared
Pascoe, John-Alan
2 / 13 shared
Monticeli, Francisco Maciel
2 / 3 shared
Li, Xi
2 / 10 shared
Garing, Clare
1 / 1 shared
Vuure, Aart Willem Van
6 / 8 shared
Gard, W. F.
1 / 1 shared
Van De Kuilen, J. W. G.
1 / 7 shared
Schildermans, Kobe
1 / 1 shared
Prapavesis, Alexandros
3 / 9 shared
Wu, Weijing
3 / 3 shared
Kopana, Penelope
3 / 3 shared
Alcaraz, Mathilde
2 / 2 shared
Alderliesten, René
5 / 44 shared
Perruchoud, Valentin
2 / 2 shared
El-Asmar, Nedda
2 / 2 shared
Van Vuure, Aart Willem
4 / 29 shared
Verpoest, Ignaas
7 / 32 shared
Vanderbeke, Jan
3 / 3 shared
Soete, Jeroen
2 / 18 shared
Hong-Hua, Zhang
1 / 1 shared
Wei, Li
1 / 4 shared
Qian-Qian, Li
1 / 1 shared
Ivens, Jan
9 / 32 shared
Vander Sloten, Jos
2 / 5 shared
Cajka, Martin
2 / 2 shared
Depreitere, Bart
6 / 6 shared
Sloten, Jos Vander
5 / 5 shared
Appels, Lise
1 / 1 shared
Dewil, Raf
1 / 2 shared
Depuydt, Delphine E. C.
1 / 1 shared
Thielemans, Wim
1 / 14 shared
Sweygers, Nick
1 / 1 shared
Eyley, Samuel
1 / 6 shared
Poulis, Hans
2 / 9 shared
Beerkens, L. G. M.
1 / 1 shared
Rie, E. René De La
1 / 2 shared
Seymour, Kate
2 / 3 shared
Poulis, J. A.
1 / 18 shared
Bosche, Kelly Vanden
3 / 3 shared
Gorbatikh, Larissa
2 / 86 shared
Clemens, Dorien
2 / 2 shared
Verpoest, Ignace
2 / 84 shared
Ebrahimi, Nadereh Golshan
2 / 3 shared
Mahdavian, Alireza
3 / 3 shared
Ashjari, Mohsen
3 / 3 shared
Vanden Bosche, Kelly
1 / 1 shared
Golshan Ebrahimi, Nadereh
1 / 1 shared
Chart of publication period
2024
2023
2022
2021
2020
2018
2015
2014
2010

Co-Authors (by relevance)

  • Gard, Wolfgang
  • Richter, K.
  • Clerc, G.
  • Van De Kuilen, Jan-Willem
  • Pascoe, John-Alan
  • Monticeli, Francisco Maciel
  • Li, Xi
  • Garing, Clare
  • Vuure, Aart Willem Van
  • Gard, W. F.
  • Van De Kuilen, J. W. G.
  • Schildermans, Kobe
  • Prapavesis, Alexandros
  • Wu, Weijing
  • Kopana, Penelope
  • Alcaraz, Mathilde
  • Alderliesten, René
  • Perruchoud, Valentin
  • El-Asmar, Nedda
  • Van Vuure, Aart Willem
  • Verpoest, Ignaas
  • Vanderbeke, Jan
  • Soete, Jeroen
  • Hong-Hua, Zhang
  • Wei, Li
  • Qian-Qian, Li
  • Ivens, Jan
  • Vander Sloten, Jos
  • Cajka, Martin
  • Depreitere, Bart
  • Sloten, Jos Vander
  • Appels, Lise
  • Dewil, Raf
  • Depuydt, Delphine E. C.
  • Thielemans, Wim
  • Sweygers, Nick
  • Eyley, Samuel
  • Poulis, Hans
  • Beerkens, L. G. M.
  • Rie, E. René De La
  • Seymour, Kate
  • Poulis, J. A.
  • Bosche, Kelly Vanden
  • Gorbatikh, Larissa
  • Clemens, Dorien
  • Verpoest, Ignace
  • Ebrahimi, Nadereh Golshan
  • Mahdavian, Alireza
  • Ashjari, Mohsen
  • Vanden Bosche, Kelly
  • Golshan Ebrahimi, Nadereh
OrganizationsLocationPeople

document

Effect Of Moisture Cycling Duration And Temperature On The Strengthening And Stiffening Of Cycled Flax Fibres

  • Garing, Clare
  • Vuure, Aart Willem Van
  • Mosleh, Yasmine
Abstract

The aim of this study was to determine the effect of moisture cycling (environmental relative humidity cycles) on the durability of flax-epoxy composites and investigate the influence of cycling duration and temperature on the stiffening and strengthening of flax fibres. Four moisture cycling protocols for flax fibres were employed in this research which includes 4D21 (4days per cycle at 21ºC), 4D60 (4days per cycle at 60ºC), 3H27 (3hours per cycle at 27ºC) and 3H60 (3hours per cycle at 60ºC). To measure the impact of high-low humidity cycling at different cycling durations and temperature, tensile testing of impregnated fibre bundle test (IFBT) samples was done. Results of the back-calculated properties revealed that the applied cycling protocols enhanced both the tensile strength and modulus of the fibres. Better improvement of tensile properties was observed in fibres cycled at longer duration. The fibres undergoing 4 days of cycling at 21ºC (4D21 fibres) showed the highest improvements in tensile strength (18%), as well as tensile moduli E1 (19%) and E2 (18%) after 10 cycles. Interestingly, all fibres showed increased stiffness (E1) in the range of 8-20% after 10 cycles and 4-8% after 20 cycles. This fibreimprovement in mechanical strength and stiffness of the fibres can possibly be attributed to a phenomenon similar to a hornification effect in wood or possibly by fibre repair due to pectin migration, which produces the strengthening and stiffening effect.

Topics
  • strength
  • composite
  • tensile strength
  • durability
  • wood