People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Van Assche, Guy
Vrije Universiteit Brussel
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (50/50 displayed)
- 2024Designing flexible and self-healing electronics using hybrid carbon black/nanoclay composites based on Diels-Alder dynamic covalent networkscitations
- 2024Construction of furan-maleimide Diels-Alder reversible network cure diagrams: modelling and experimental validation
- 2024Diels-Alder Network Blends as Self-Healing Encapsulants for Liquid Metal-Based Stretchable Electronicscitations
- 2024Modelling of diffusion-controlled Diels-Alder reversible network formation and its application to cure diagrams
- 2023Differentiating between the diffusion of water and ions from aqueous electrolytes in organic coatings using an integrated spectro-electrochemical techniquecitations
- 2023Fast Self-Healing at Room Temperature in Diels–Alder Elastomerscitations
- 2023Effect of Secondary Particles on Self-Healing and Electromechanical Properties of Polymer Composites Based on Carbon Black and a Diels–Alder Networkcitations
- 2021The Influence of the Furan and Maleimide Stoichiometry on the Thermoreversible Diels–Alder Network Polymerizationcitations
- 2020Self-Healing Material Design and Optimization for Soft Robotic Applications
- 2019Diffusion- and Mobility-Controlled Self-Healing Polymer Networks with Dynamic Covalent Bondingcitations
- 2019Characterisation of rapid water uptake in model coatings using instantaneous impedance
- 2017Probing the bulk heterojunction morphology in thermally annealed active layers for polymer solar cellscitations
- 2017Towards the first developments of self-healing soft robotics
- 2016Electrospinning of sacrificial nanofibers for the creation of a self-healing nanovascular network and its effect on the properties of an epoxy matrix
- 2016Thermal behaviour below and inside the glass transition region of a submicron P3HT layer studied by fast scanning chip calorimetrycitations
- 2015Isocyanate free condensed tannin-based polyurethanescitations
- 2015Isothermal Crystallization of PC61BM in Thin Layers Far below the Glass Transition Temperaturecitations
- 2013Ester-functionalized poly(3-alkylthiophene) copolymers: Synthesis, physicochemical characterization and performance in bulk heterojunction organic solar cellscitations
- 2013Optimization of Extrusion Parameters for Preparing PCL-Layered Silicate Nanocomposites Supported by Modeling of Twin-Screw Extrusioncitations
- 2012The effect of nano-sized filler particles on the crystalline-amorphous interphase and thermal properties in polyester nanocompositescitations
- 2012Analysing organic solar cell blends at thousands of degrees per second
- 2012Improved Photovoltaic Performance of a Semicrystalline Narrow Bandgap Copolymer Based on 4H-Cyclopenta[2,1-b:3,4-b ']dithiophene Donor and Thiazolo[5,4-d]thiazole Acceptor Unitscitations
- 2012Improved Photovoltaic Performance of a Semicrystalline Narrow Bandgap Copolymer Based on 4H-Cyclopenta[2,1-b:3,4-b ']dithiophene Donor and Thiazolo[5,4-d]thiazole Acceptor Units
- 2012Crystallization Kinetics and Morphology Relations on Thermally Annealed Bulk Heterojunction Solar Cell Blends Studied by Rapid Heat Cool Calorimetry (RHC)
- 2012The kinetic analysis of isothermal curing reaction of an epoxy resin-glassflake nanocompositecitations
- 2011Construction of the state diagram of polymer blend thin films using differential AC chip calorimetrycitations
- 2011Phase behavior of PCBM blends with different conjugated polymers
- 2011Partially miscible polystyrene/polymethylphenylsiloxane blends for nanocompositescitations
- 2011Improving The Dispersion Of Carbon Nanotubes In Polystyrene By Blending With Siloxane
- 2011Self-healing property characterization of reversible thermoset coatings
- 2011Thermal annealing of P3HT: PCBM blends for photovoltaic studies
- 2011Partially miscible polystyrene/ polymethylphenylsiloxane blends for nanocomposites
- 2011A combined mechanical, microscopic and local electrochemical evaluation of self-healing properties of shape-memory polyurethane coatings (available online)
- 2011Thermal Annealing of P3HT: PCBM Organic Photovoltaic Blends
- 2011Relations between phase diagram, kinetics of thermal annealing process, and morphological stability in polymer:fullerene blends for bulk heterojunction solar cells
- 2011Isothermal crystallisation study of P3HT:PCBM blends as used in bulk heterojunction solar cells based on fast scanning calorimetry techniques
- 2011Rheology of nanocompositescitations
- 2010Phase separation in polymer blend thin films studied by differential AC chip calorimetrycitations
- 2010RheoDSC Analysis of Hardening of Semi-Crystalline Polymers during Quiescent Isothermal Crystallizationcitations
- 2010Qualitative assessment of nanofiller dispersion in poly(epsilon-caprolactone) nanocomposites by mechanical testing, dynamic rheometry and advanced thermal analysiscitations
- 2010Isothermal crystallization kinetics of P3HT:PCBM blends by means of RHC
- 2009Theoretical analysis of carbon nanotube wetting in polystyrene nanocompositescitations
- 2009Phase Diagram of P3HT/PCBM Blends and Its Implication for the Stability of Morphologycitations
- 2009The use of nanofibers of P3HT in bulk heterojunction solar cells: the effect of order and morphology on the performance of P3HT:PCBM blends
- 2008The thermal degradation of poly(vinyl acetate) and poly(ethylene-co-vinyl acetate), Part I: Experimental study of the degradation mechanismcitations
- 2008The thermal degradation of poly(vinyl acetate) and poly(ethylene-co-vinyl acetate), Part II: Modelling the degradation kineticscitations
- 2007Reaction mechanism, kinetics and high temperature transformations of geopolymers
- 2007Formation, molecular structure and thermal properties of geopolymers
- 2006Restricted chain segment mobility in poly(amide) 6/clay nanocomposites evidenced by quasi-isothermal crystallizationcitations
- 2002Mechanistic modeling of the wall reactions in the pyrolysis of pentachloroethane
Places of action
Organizations | Location | People |
---|
document
Modelling of diffusion-controlled Diels-Alder reversible network formation and its application to cure diagrams
Abstract
In recent years, significant attention has been devoted to the study of thermoreversible networks based on Diels-Alder (DA) bonding for their potential as self-healing materials. Two competing equilibria result from the DA reaction, involving endo- and exo- cycloadducts, with covalent bond formation favored at low temperatures and their opening preferred at higher temperatures. Apart from granting self-healing abilities, these dynamic bonds enhance material lifetime, stability, reliability and sustainability, but also improve recyclability, reprocessability, and reshapeability compared to traditional network-forming materials. These enhanced properties make these materials suitable for many applications, especially those requiring robust thermomechanical properties. Such applications imply the necessity of a (partially) vitrified network with a sufficiently high glass transition temperature (Tg ). This will inevitably affect their self-healing, as both forward and retro-DA reaction rates may be impacted by the limited mobility.<br/>In this work, the impact of vitrification on DA reaction kinetics is investigated for a reversible thermosetting network based on a furan-maleimide chemistry. First, the feasibility of self-healing in diffusion-controlled conditions is proven. Secondly, a novel mechanistic model describing the system in both kinetically and diffusion-controlled conditions is proposed. Optimization of the kinetic, thermodynamic, and diffusion parameters was done using calorimetric data and Tg evolutions. These parameters allowed the construction of Time-Temperature-Transformation and Continuous-Heating-Transformation. Their unique shapes, largely different from classical irreversible thermosets, were experimentally confirmed by thermo(mechanical) analysis. This insight is particularly relevant for the design and processing of these materials, emphasizing their potential in self-healing applications.<br/>