People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Van Den Brande, Niko
Vrije Universiteit Brussel
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (43/43 displayed)
- 2024Construction of furan-maleimide Diels-Alder reversible network cure diagrams: modelling and experimental validation
- 2024Effects of Cure on the Ionic Conductivity and Relaxation Strength of a Reversible Polymer Network Studied by Dielectric Spectroscopy.citations
- 2024Diels-Alder Network Blends as Self-Healing Encapsulants for Liquid Metal-Based Stretchable Electronicscitations
- 2024Modelling of diffusion-controlled Diels-Alder reversible network formation and its application to cure diagrams
- 2023Separating Kinetics from Relaxation Dynamics in Reactive Soft Matter by Dielectric Spectroscopycitations
- 2023Real-Time Determination of the Glass Transition Temperature during Reversible Network Formation Based on Furan–Maleimide Diels–Alder Cycloadditions Using Dielectric Spectroscopycitations
- 2022A PDTPQx:PC61BM blend with pronounced charge-transfer absorption for organic resonant cavity photodetectors – direct arylation polymerization vs. Stille polycondensationcitations
- 2022A PDTPQx:PC61BM blend with pronounced charge-transfer absorption for organic resonant cavity photodetectors – direct arylation polymerization vs. Stille polycondensationcitations
- 2022UV Stability of Self-Healing Poly(methacrylate) Network Layerscitations
- 2021Phosphonium-based polythiophene conjugated polyelectrolytes with different surfactant counterions: thermal properties, self-assembly and photovoltaic performancescitations
- 2020UV-curable self-healing polymer layers for application in photovoltaics
- 2020Phosphonium‐based polythiophene conjugated polyelectrolytes with different surfactant counterions: thermal properties, self‐assembly and photovoltaic performancescitations
- 2020Self-Healing in Mobility-Restricted Conditions Maintaining Mechanical Robustness: Furan–Maleimide Diels–Alder Cycloadditions in Polymer Networks for Ambient Applicationscitations
- 2020Phosphonium-based polythiopheneconjugated polyelectrolytes with differentsurfactant counterions: thermal properties,self-assembly and photovoltaic performancescitations
- 2020Phosphonium-based polythiophene conjugated polyelectrolytes with different surfactant counterions: thermal properties, self-assembly and photovoltaic performances
- 2020Comparative study on the effects of alkylsilyl and alkylthio side chains on the performance of fullerene and non-fullerene polymer solar cellscitations
- 2020Comparative study on the effects of alkylsilyl and alkylthio side chains on the performance of fullerene and non-fullerene polymer solar cellscitations
- 2020Self-healing UV-curable polymer network with reversible Diels-Alder bonds for applications in ambient conditionscitations
- 2019Diffusion- and Mobility-Controlled Self-Healing Polymer Networks with Dynamic Covalent Bondingcitations
- 2019Increasing photovoltaic module sustainability through UV-curable self-healing polymer layers
- 2019UV-curable self-healing polymer layers for increased sustainability of photovoltaics
- 2019Ladder-type high gap conjugated polymers based on indacenodithieno[3,2-b]thiophene and bithiazole for organic photovoltaicscitations
- 2018The Effect of Vitrification on the Diels-Alder Reaction Kinetics
- 2018Glass Structure Controls Crystal Polymorph Selection in Vapor-Deposited Films of 4,4 '-Bis(N-carbazolyI)-1,1 '-biphenylcitations
- 2017Probing the bulk heterojunction morphology in thermally annealed active layers for polymer solar cellscitations
- 2016High-Permittivity Conjugated Polyelectrolyte Interlayers for High-Performance Bulk Heterojunction Organic Solar Cellscitations
- 2016Elucidating Batch-to-Batch Variation Caused by Homocoupled Side Products in Solution-Processable Organic Solar Cellscitations
- 2016Thermal behaviour below and inside the glass transition region of a submicron P3HT layer studied by fast scanning chip calorimetrycitations
- 2015Isothermal Crystallization of PC61BM in Thin Layers Far below the Glass Transition Temperaturecitations
- 2015Effect of molecular weight on morphology and photovoltaic properties in P3HT:PCBM solar cellscitations
- 2015Effect of molecular weight on morphology and photovoltaic properties in P3HT:PCBM solar cells
- 2013Imidazolium-substituted ionic (co)polythiophenes: Compositional influence on solution behavior and thermal propertiescitations
- 2013Imidazolium-substituted ionic (co)polythiophenes: Compositional influence on solution behavior and thermal properties
- 2012Analysing organic solar cell blends at thousands of degrees per second
- 2012Improved Photovoltaic Performance of a Semicrystalline Narrow Bandgap Copolymer Based on 4H-Cyclopenta[2,1-b:3,4-b ']dithiophene Donor and Thiazolo[5,4-d]thiazole Acceptor Unitscitations
- 2012Improved Photovoltaic Performance of a Semicrystalline Narrow Bandgap Copolymer Based on 4H-Cyclopenta[2,1-b:3,4-b ']dithiophene Donor and Thiazolo[5,4-d]thiazole Acceptor Units
- 2012Crystallization Kinetics and Morphology Relations on Thermally Annealed Bulk Heterojunction Solar Cell Blends Studied by Rapid Heat Cool Calorimetry (RHC)
- 2011Improving The Dispersion Of Carbon Nanotubes In Polystyrene By Blending With Siloxane
- 2011Thermal annealing of P3HT: PCBM blends for photovoltaic studies
- 2011Partially miscible polystyrene/ polymethylphenylsiloxane blends for nanocomposites
- 2011Thermal Annealing of P3HT: PCBM Organic Photovoltaic Blends
- 2011Isothermal crystallisation study of P3HT:PCBM blends as used in bulk heterojunction solar cells based on fast scanning calorimetry techniques
- 2010Isothermal crystallization kinetics of P3HT:PCBM blends by means of RHC
Places of action
Organizations | Location | People |
---|
document
Modelling of diffusion-controlled Diels-Alder reversible network formation and its application to cure diagrams
Abstract
In recent years, significant attention has been devoted to the study of thermoreversible networks based on Diels-Alder (DA) bonding for their potential as self-healing materials. Two competing equilibria result from the DA reaction, involving endo- and exo- cycloadducts, with covalent bond formation favored at low temperatures and their opening preferred at higher temperatures. Apart from granting self-healing abilities, these dynamic bonds enhance material lifetime, stability, reliability and sustainability, but also improve recyclability, reprocessability, and reshapeability compared to traditional network-forming materials. These enhanced properties make these materials suitable for many applications, especially those requiring robust thermomechanical properties. Such applications imply the necessity of a (partially) vitrified network with a sufficiently high glass transition temperature (Tg ). This will inevitably affect their self-healing, as both forward and retro-DA reaction rates may be impacted by the limited mobility.<br/>In this work, the impact of vitrification on DA reaction kinetics is investigated for a reversible thermosetting network based on a furan-maleimide chemistry. First, the feasibility of self-healing in diffusion-controlled conditions is proven. Secondly, a novel mechanistic model describing the system in both kinetically and diffusion-controlled conditions is proposed. Optimization of the kinetic, thermodynamic, and diffusion parameters was done using calorimetric data and Tg evolutions. These parameters allowed the construction of Time-Temperature-Transformation and Continuous-Heating-Transformation. Their unique shapes, largely different from classical irreversible thermosets, were experimentally confirmed by thermo(mechanical) analysis. This insight is particularly relevant for the design and processing of these materials, emphasizing their potential in self-healing applications.<br/>