Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Kucheyev, S. O.

  • Google
  • 18
  • 37
  • 1144

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (18/18 displayed)

  • 2007Energetic Processing of Interstellar Silicate Grains by Cosmic Rays81citations
  • 2005Ion irradiation-induced disordering of semiconductors5citations
  • 2004Ion-beam-defect processes in group-III nitrides and ZnO46citations
  • 2004Dynamic annealing in III-nitrides under ion bombardment54citations
  • 2004Lattice damage produced in GaN by swift heavy ions83citations
  • 2003Ion-beam-produced structural defects in ZnO254citations
  • 2002Electrical isolation of ZnO by ion bombardment65citations
  • 2002Ion-beam-produced damage and its stability in AlN films64citations
  • 2002Structural disorder in ion-implanted AlxGa1-xN40citations
  • 2001Effect of ion species on the accumulation of ion-beam damage in GaNcitations
  • 2001Electrical isolation of GaN by MeV ion irradiation50citations
  • 2001The effects of ion mass, energy, dose, flux and irradiation temperature on implantation disorder in GaN39citations
  • 2001Disordering and anomalous surface erosion of GaN during ion bombardment at elevated temperatures32citations
  • 2000Ion-beam-induced porosity of GaN69citations
  • 2000Polycrystallization and surface erosion of amorphous GaN during elevated temperature ion bombardment15citations
  • 2000Ion-beam-induced dissociation and bubble formation in GaN72citations
  • 2000Damage buildup in GaN under ion bombardment175citations
  • 2000Surface disordering and nitrogen loss in GaN under ion bombardmentcitations

Places of action

Chart of shared publication
Felter, T. E.
1 / 1 shared
Van Breugel, W.
1 / 1 shared
Baragiola, R. A.
1 / 1 shared
Loeffler, M. J.
1 / 1 shared
Bradley, J. P.
1 / 4 shared
Bajt, S.
1 / 3 shared
Graham, G.
1 / 2 shared
Torres, Diego F.
1 / 1 shared
Dai, Z. R.
1 / 1 shared
Dukes, C. A.
1 / 1 shared
Bringa, E. M.
1 / 4 shared
Tielens, A. G. G. M.
1 / 16 shared
Williams, J. S.
17 / 39 shared
Zou, J.
10 / 17 shared
Li, G.
11 / 31 shared
Timmers, H.
1 / 2 shared
Hamza, A. V.
1 / 4 shared
Evans, Cheryl
1 / 1 shared
Nelson, A. J.
1 / 2 shared
Inoue, Masataka
1 / 1 shared
Ogata, Ken Ichi
1 / 1 shared
Koike, Kazuto
1 / 2 shared
Deenapanray, P. N. K.
1 / 7 shared
Sasa, Shigehiko
1 / 1 shared
Yano, Mitsuaki
1 / 2 shared
Guo, S.
2 / 11 shared
Ferguson, I. T.
2 / 6 shared
Manasreh, M. O.
2 / 13 shared
Pophristic, M.
2 / 4 shared
Zou, Jin
3 / 26 shared
Jagadish, C.
3 / 23 shared
Titov, A. I.
1 / 3 shared
Boudinov, H.
1 / 3 shared
Tan, H. H.
1 / 6 shared
Phillips, M. R.
1 / 3 shared
Pearton, S. J.
1 / 3 shared
Toth, M.
1 / 3 shared
Chart of publication period
2007
2005
2004
2003
2002
2001
2000

Co-Authors (by relevance)

  • Felter, T. E.
  • Van Breugel, W.
  • Baragiola, R. A.
  • Loeffler, M. J.
  • Bradley, J. P.
  • Bajt, S.
  • Graham, G.
  • Torres, Diego F.
  • Dai, Z. R.
  • Dukes, C. A.
  • Bringa, E. M.
  • Tielens, A. G. G. M.
  • Williams, J. S.
  • Zou, J.
  • Li, G.
  • Timmers, H.
  • Hamza, A. V.
  • Evans, Cheryl
  • Nelson, A. J.
  • Inoue, Masataka
  • Ogata, Ken Ichi
  • Koike, Kazuto
  • Deenapanray, P. N. K.
  • Sasa, Shigehiko
  • Yano, Mitsuaki
  • Guo, S.
  • Ferguson, I. T.
  • Manasreh, M. O.
  • Pophristic, M.
  • Zou, Jin
  • Jagadish, C.
  • Titov, A. I.
  • Boudinov, H.
  • Tan, H. H.
  • Phillips, M. R.
  • Pearton, S. J.
  • Toth, M.
OrganizationsLocationPeople

article

Effect of ion species on the accumulation of ion-beam damage in GaN

  • Li, G.
  • Kucheyev, S. O.
  • Williams, J. S.
  • Zou, J.
  • Titov, A. I.
Abstract

<p>Wurtzite GaN epilayers bombarded with a wide range of ion species (10 keV <sup>1</sup>H, 40 keV <sup>12</sup>C 50 keV <sup>16</sup>O, 600 keV <sup>28</sup>Si. 130 keV <sup>63</sup>Cu, 200 keV <sup>107</sup>Ag, 300 keV <sup>197</sup>Au, and 500 keV <sup>209</sup>Bi) are studied by a combination of Rutherford backscattering/channeling (RBS/C) spectrometry and cross-sectional transmission electron microscopy. Results show that strong dynamic annealing processes lead to a complex dependence of the damage-buildup behavior in GaN on ion species. For room -temperature bombardment with different ion species, bulk disorder, as measured by RBS/C, saturates at some level that is below the random level, and amorphization proceeds layer-by-layer from the GaN surface with increasing ion dose. The saturation level of bulk disorder depends on implant conditions and is much higher for light-ion bombardment than for the heavy-ion irradiation regime. In the case of light ions, when ion doses needed to observe significant lattice disorder in GaN are large (≳ 10<sup>16</sup> cm<sup>-2</sup>), chemical effects of implanted species dominate. Such implanted atoms appear to stabilize an amorphous phase in GaN and/or to act as effective traps for ion-beam-generated mobile point defects and enhance damage buildup. In particular, the presence of a large concentration of carbon in GaN strongly enhances the accumulation of implantation-produced disorder. For heavier ions, where chemical effects of implanted species seem to be negligible, an increase in the density of collision cascades strongly increases the level of implantation-produced lattice disorder in the bulk as well as the rate of layerby-layer amorphization proceeding from the surface. Such an increase in stable damage and the rate of planar amorphization is attributed to (i) an increase in the defect clustering efficiency with increasing density of ion-beam-generated defects and/or (ii) a superlinear dependence of ion-beam-generated defects, which survive cascade quenching, on the density of collision cascades. Physical mechanisms responsible for such a super-linear dependence of ion-beam-generated defects on collision cascade density are considered. Mechanisms of surface and bulk amorphization in GaN are also discussed.</p>

Topics
  • density
  • impedance spectroscopy
  • surface
  • amorphous
  • Carbon
  • phase
  • transmission electron microscopy
  • annealing
  • random
  • spectrometry
  • clustering
  • quenching
  • Rutherford backscattering spectrometry
  • point defect