People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Gastaldi, Emmanuelle
University of Montpellier
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (27/27 displayed)
- 2023Monitoring the degradation status of biodegradable polymers by assessing thermal properties
- 2023Compostability of certified biodegradable plastics at industrial scale processing conditions
- 2022Effects of Kraft lignin and corn cob agro-residue on the properties of injected-moulded biocompositescitations
- 2022Effects of Kraft lignin and corn cob agro-residue on the properties of injected-moulded biocompositescitations
- 2020Multi-faceted migration in food contact polyethylene-based nanocomposite packagingcitations
- 2020How Vine Shoots as Fillers Impact the Biodegradation of PHBV-Based Compositescitations
- 2019How olive pomace can be valorized as fillers to tune the biodegradation of PHBV based compositescitations
- 2019A comparative study of degradation mechanisms of PBSA and PHBV under laboratoryscale composting conditionscitations
- 2019New Insights For The Fragmentation Of Plastics Into Microplastics In The Ocean
- 2019Experimental and theoretical study of the erosion of semi-crystalline polymers and the subsequent generation of microparticles.citations
- 2018Fast-Biodegrading polymers
- 2018Soy protein isolate nanocomposite film enriched with eugenol, an antimicrobial agent: Interactions and propertiescitations
- 2018Soy protein isolate nanocomposite film enriched with eugenol, an antimicrobial agent: Interactions and propertiescitations
- 2018Nanostructured biopolymers obtained from blends by extrusion
- 2018How Performance and Fate of Biodegradable Mulch Films are Impacted by Field Ageingcitations
- 2017Contribution of nanoclay to the additive partitioning in polymerscitations
- 2016Effect of nanoclay on the transfer properties of immanent additives in food packagescitations
- 2013Water transport mechanisms in wheat gluten based (nano) composite materialscitations
- 2013Nanoparticle size and water diffusivity in nanocomposite agro-polymer based filmscitations
- 2013Nanoparticle size and water diffusivity in nanocomposite agro-polymer based filmscitations
- 2013Protein-Based Nanocomposites for Food Packagingcitations
- 2013Biocomposites from wheat proteins and fibers: Structure/mechanical properties relationshipscitations
- 2013Adhesion properties of wheat-based particlescitations
- 2012Protein/Clay Nano-Biocompositescitations
- 2011Impact of high pressure treatment on the structure of montmorillonitecitations
- 2010Réduction de l'impact de l’utilisation des produits phytosanitaires: Contrôle de la libération dans le sol par un granulé protéique biodégradable nanocomposite
- 2010Synthesis of nanocomposite films from wheat gluten matrix and MMT intercalated with different quaternary ammonium salts by way of hydroalcoholic solvent castingcitations
Places of action
Organizations | Location | People |
---|
conferencepaper
Monitoring the degradation status of biodegradable polymers by assessing thermal properties
Abstract
With the increase of the global population, the demand for plastic materials in every aspect of life and industry has become tremendous, the packaging sector being the first to both use plastics and produce plastic wastes, whose a great part will irremediably end up in both terrestrial and aquatic environments. To face the environmental issues stemming from the accumulation of conventional plastics, biodegradable plastics, whether they derive from renewable feedstocks or petroleum, are seen as promising alternatives. Among the biodegradable plastics suitable for replacing conventional plastics for food packaging applications for instance, several materials based on different polymer and formulations (PBAT, PLA, PHAs, PBS, PBSA, TPS) are currently available for satisfying the functional requirements of a daily use plastic with a lower environmental impact. Despite their promising potential, the development of these alternative solutions has given rise to debates about their performance under real conditions, particularly because of the risk of releasing microplastic residues, the persistence of which remains to be demonstrated.In this context, the present study aims at providing a critical assessment of the main methodological approaches commonly used to monitor the progress of the biodegradation process and evaluate the degradation status of plastic micro-fragments made of biodegradable polymers that could potentially be released into the environment. Amongst the methods highlighting morphological, structural, and chemical modifications induced on the surface and/or in the bulk of the material, measurements of thermal properties have emerged as relevant quantitative descriptors for assessing polymer degradation and predicting their fate in the environment.