Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Grove, Sm

  • Google
  • 1
  • 2
  • 0

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2017Air permeability of balsa core, and its influence on defect formation in resin infused sandwich laminatescitations

Places of action

Chart of shared publication
Summerscales, John
1 / 37 shared
Cullen, Rk
1 / 3 shared
Chart of publication period
2017

Co-Authors (by relevance)

  • Summerscales, John
  • Cullen, Rk
OrganizationsLocationPeople

document

Air permeability of balsa core, and its influence on defect formation in resin infused sandwich laminates

  • Summerscales, John
  • Cullen, Rk
  • Grove, Sm
Abstract

Many large composite structures are manufactured using sandwich laminates to achieve high specific bending strength and stiffness. For wind turbine blades, the self-weight becomes increasingly important as blade size increases. Resin infusion of three-dimensional sandwich laminates can result in complex flow paths, and subsequent defect formation is difficult to predict. The core material used for sandwich construction and its interaction with liquid resins may also influence the formation of defects. In the case of balsa, this effect can be used to reduce defect severity. This paper considers the effect of cored sandwich laminate construction on the formation of defects. The primary focus is the characterisation of commonly used core materials and their interaction with liquid resin under high vacuum conditions. For balsa core, experiments indicate that the available pore space can act as a sink for trapped air, which can aid the reduction of defects when multiple flow fronts converge due to the complex flow paths in sandwich laminates. Empirical data for air absorption and desorption rates in balsa core were obtained using a custom-designed experiment. Using these data, a theoretical model was developed that can indicate available pore space, which in turn informs optimum processing conditions, such as time under vacuum. The diffusion coefficients obtained for air absorption and desorption in balsa are very similar, and lie in the middle of published ranges for hard woods at around 2 × 10-7 m2/s. The methodology developed represents actual behaviour of air absorption/desorption during resin infusion, whilst other techniques do not, merely measuring diffusion of air through a sample while not allowing for finite pore space. In consequence, infusion strategies can be planned more precisely because the core/resin interaction is better understood. Knit line defect formation could be predicted with greater accuracy with suitably modified flow-modelling programs.

Topics
  • impedance spectroscopy
  • pore
  • experiment
  • strength
  • composite
  • permeability
  • wood
  • resin