Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Moulinec, Hervé

  • Google
  • 9
  • 26
  • 151

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (9/9 displayed)

  • 2022Effective thermo-viscoelastic behavior of short fiber reinforced thermo-rheologically simple polymers: An application to high temperature fiber reinforced additive manufacturing17citations
  • 2021Viscoplastic behavior of a porous polycrystal with similar pore and grain sizes: application to nuclear MOX fuel materials7citations
  • 2020Mean-Field Approximations in Effective Thermo-viscoelastic Behavior for Composite Parts Obtained via Fused Deposition Modeling Technologycitations
  • 2020Mean-Field Approximations in Effective Thermo-viscoelastic Behavior for Composite Parts Obtained via Fused Deposition Modeling Technologycitations
  • 2020Porous polycrystal plasticity modeling of neutron-irradiated austenitic stainless steels12citations
  • 2018Effective viscoelastic behavior of short fibers composites using virtual DMA experiments13citations
  • 2014Calibration of crystal plasticity models : application to primary creep in polycrystalline icecitations
  • 2012Effective flow surface of a bi-porous material: constitutive modeling and numerical simulationscitations
  • 2006Macroscopic behavior and field fluctuations in viscoplastic composites: Second-order estimates versus full-field simulations102citations

Places of action

Chart of shared publication
Lahellec, Noël
4 / 4 shared
Cornaggia, Rémi
3 / 3 shared
Maurel-Pantel, Aurelien
2 / 7 shared
Bordas, Stéphane
3 / 20 shared
Boussaa, Djaffar
1 / 1 shared
Suarez-Afanador, C. A.
1 / 1 shared
Vincent, Pierre Guy
1 / 2 shared
Portelette, Luc
1 / 3 shared
Garajeu, Mihail
2 / 8 shared
Baroli, Davide
2 / 6 shared
Boussa, Djaffar
2 / 2 shared
Billon, Noelle
2 / 4 shared
Suarez Afanador, Camilo
1 / 1 shared
Maurel-Pantel, Aurélien
2 / 5 shared
Afanador, Camilo Suarez
1 / 1 shared
Idiart, Martín
1 / 2 shared
Vincent, Pierre-Guy
2 / 11 shared
Joëssel, Louis
1 / 1 shared
Lebon, Frédéric
1 / 20 shared
Billon, Noëlle
1 / 41 shared
Bouvard, Jean-Luc
1 / 31 shared
Burgarella, Boris
1 / 2 shared
Suquet, Pierre
3 / 10 shared
Monerie, Yann
1 / 24 shared
Idiart, Martin
1 / 2 shared
Ponte Castañeda, Pedro
1 / 8 shared
Chart of publication period
2022
2021
2020
2018
2014
2012
2006

Co-Authors (by relevance)

  • Lahellec, Noël
  • Cornaggia, Rémi
  • Maurel-Pantel, Aurelien
  • Bordas, Stéphane
  • Boussaa, Djaffar
  • Suarez-Afanador, C. A.
  • Vincent, Pierre Guy
  • Portelette, Luc
  • Garajeu, Mihail
  • Baroli, Davide
  • Boussa, Djaffar
  • Billon, Noelle
  • Suarez Afanador, Camilo
  • Maurel-Pantel, Aurélien
  • Afanador, Camilo Suarez
  • Idiart, Martín
  • Vincent, Pierre-Guy
  • Joëssel, Louis
  • Lebon, Frédéric
  • Billon, Noëlle
  • Bouvard, Jean-Luc
  • Burgarella, Boris
  • Suquet, Pierre
  • Monerie, Yann
  • Idiart, Martin
  • Ponte Castañeda, Pedro
OrganizationsLocationPeople

document

Mean-Field Approximations in Effective Thermo-viscoelastic Behavior for Composite Parts Obtained via Fused Deposition Modeling Technology

  • Baroli, Davide
  • Lahellec, Noël
  • Afanador, Camilo Suarez
  • Boussa, Djaffar
  • Moulinec, Hervé
  • Billon, Noelle
  • Cornaggia, Rémi
  • Bordas, Stéphane
  • Maurel-Pantel, Aurélien
Abstract

Aiming to estimate the effective behavior of the parts obtained by fused deposition modeling (FDM) in the case of short fiber composite materials, the Mean-field homogenization procedure, introduced in linear elasticity, is here extended to linear thermo-viscoelasticity. The variation of the parameters describing the state of the fibers inside the printing filament is represented by introducing appropriate distribution functions obtained through the statistical analysis of the microstructure. The validation of the procedure is achieved by comparing its predictions with calculations based on full-field Fast-Fourier-Transform homogenization and experiments results from samples treated in autoclave to remove layer-scale porosities from the printed filament.

Topics
  • Deposition
  • impedance spectroscopy
  • microstructure
  • experiment
  • composite
  • viscoelasticity
  • elasticity
  • homogenization