People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Bodner, Merit
Graz University of Technology
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (15/15 displayed)
- 2024In-situ and ex-situ monitoring of membrane degradationin polymer electrolyte fuel cells using advanced analytical techniques
- 2023Induced Hydrogen Crossover Accelerated Stress Test for PEM Water Electrolysis Cells
- 2023Ex-situ measurement of chemical membrane degradation using photometry
- 2023Mechanistic study of fast performance decay of Pt-Cu alloy based catalyst layers for polymer electrolyte fuel cells through electrochemical impedance spectroscopycitations
- 2023Mechanistic study of fast performance decay of PtCu alloy-based catalyst layers for polymer electrolyte fuel cells through electrochemical impedance spectroscopycitations
- 2023Surfactant doped polyaniline coatings for functionalized gas diffusion layers in low temperature fuel cellscitations
- 2023Analysis of PEM Water Electrolyzer Failure Due to Induced Hydrogen Crossover in Catalyst-Coated PFSA Membranescitations
- 2023Modeling of Catalyst Degradation in PEM Fuel Cells Applied to 3D Simulation
- 2023Effects of Catalyst Ink Storage on Polymer Electrolyte Fuel Cellscitations
- 2023Investigation of Gas Diffusion Layer Degradation in Polymer Electrolyte Fuel Cell Via Chemical Oxidationcitations
- 2022Derivate photometry as a method for the determination of fluorine emission rates in polymer electrolyte fuel cells
- 2022Colorimetric method for the determination of fluoride emission rates in polymer electrolyte fuel cells
- 2022Influence of electrode composition and operating conditions on the performance and the electrochemical impedance spectra of polymer electrolyte fuel cells
- 2019Structural Characterization of Membrane-Electrode-Assemblies in High Temperature Polymer Electrolyte Membrane Fuel Cellscitations
- 2017Determining the total fluorine emission rate in polymer electrolyte fuel cell effluent watercitations
Places of action
Organizations | Location | People |
---|
document
Modeling of Catalyst Degradation in PEM Fuel Cells Applied to 3D Simulation
Abstract
The durability of fuel cell stacks is a crucial topic on their way to commercialization. Themost sensitive component of the PEM fuel cell is the cathode catalyst layer, since the catalyst material (usually platinum) and its support (usually carbon) are highly sensitive to potential, temperature and humidity changes which occur permanently during the fuel cell operation. The following degradation mechanisms are associated with the catalyst particlesand their support:<br/>• Carbon support corrosion, carbon oxidation, platinum oxidation<br/>• Platinum dissolution and redeposition<br/>• Particle detachment and agglomeration<br/>In this work, an electrochemical model for above mentioned degradation effects ispresented. The model is implemented in a commercial CFD code. Simulation results on athree-serpentine channel PEM fuel cell with an active area of 25 centimeter square are compared to measurements under various temperatures and humidities. The experimental data are obtained with a segmented test cell from S++ (Germany) and a G60 PEM fuel cell test station from Greenlight (Canada) using respective degradation protocols and test conditions proposed by the US Department of Energy.<br/>