People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Trimmel, Gregor
Graz University of Technology
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (19/19 displayed)
- 2023Silicon and Germanium Functionalized Perylene Diimides – Synthesis, Optoelectronic Properties, and their Application as Non-Fullerene Acceptors in Organic Solar Cellscitations
- 2023Thermally-triggered multi-shape-memory behavior of binary blends of cross-linked EPDM with various thermoplastic polyethylenes and their potential applications as temperature indicatorscitations
- 2023The challenge with high permittivity acceptors in organic solar cells: a case study with Y-series derivativescitations
- 2023Bio-Polyester/Rubber Compounds: Fabrication, Characterization, and Biodegradationcitations
- 2022Silica-based fibers with axially aligned mesopores from chitin self-assembly and sol-gel chemistrycitations
- 2022Glycol bearing perylene monoimide based non-fullerene acceptors with increased dielectric permittivitycitations
- 2020Cellulose metal sulfide based nanocomposite thin films
- 2020Synthesis and characterization of zinc di(O-2,2-dimethylpentan-3-yl dithiocarbonates) bearing pyridine or tetramethylethylenediamine coligands and investigation of their thermal conversion mechanisms towards nanocrystalline zinc sulfidecitations
- 20194-D Printing of NiTi Shape Memory Alloys
- 2019Multi-layered nanoscale cellulose/CuInS2 sandwich type thin filmscitations
- 2019Modification of NiOx hole transport layers with 4-bromobenzylphosphonic acid and its influence on the performance of lead halide perovskite solar cellscitations
- 2017Progress on lead-free metal halide perovskites for photovoltaic applications: a reviewcitations
- 2016Solution-Processed Bismuth(III)-Based Halide Perovskites as Absorber Materials for Photovoltaic Applications
- 2016Influence of Polymer Phase, Polymer/Nanoparticle Ratio and Organic Additives on the Performance of Hybrid Solar Cells
- 2014A combined approach to predict spatial temperature evolution and its consequences during FIB processing of soft mattercitations
- 2013Bismuth sulphide–polymer nanocomposites from a highly soluble bismuth xanthate precursorcitations
- 2013Chemical degradation and morphological instabilities during focused ion beam prototyping of polymerscitations
- 2013Influence of the bridging atom in fluorene analogue low‐bandgap polymers on photophysical and morphological properties of copper indium sulfide/polymer nanocomposite solar cellscitations
- 2012Comprehensive Investigation of Silver Nanoparticle/Aluminum Electrodes for Copper Indium Sulfide/Polymer Hybrid Solar Cellscitations
Places of action
Organizations | Location | People |
---|
document
4-D Printing of NiTi Shape Memory Alloys
Abstract
Nickel-Titanium (NiTi) shape memory alloys (SMA) have been broadly employed to biomedical and aerospace industry due to its functional properties, namely shape memory effect (SME) and superelasticity (SE). Usually, NiTi is thermo-mechanically processed from cast ingots, thereafter forming into rods, bars, sheets and wires. For this purpose, the material must follow a complex combination of working conditions. However, intrinsic problems such as high reactivity and strength configure an additional challenge to their processing. Nonetheless, in the last decade additive manufacturing (AM) has shown be capable of overcoming such difficulties, once it enables the manufacturing of complex SMA parts of maintaining its desired functional properties [1].<br/>In AM, powder-based processes have skyrocketed and, according to recent reviews, selective laser melting (SLM) is the main technique used for the processing of SMA. On the other hand, SLM and related powder-based processes still present two critical limitations: impurity pick-up (C, O and N) and part size limitation. One alternative to mitigate the aforementioned problems is found on the electron beam freeform fabrication (EBF3) technique. EBF3 uses electron beam as energy source and wires as feedstock, additively fabricating medium-to-large near net shape parts. In addition, since processing takes place in a vacuum chamber, the level of contamination is reduced. In reason of its versatility, this cutting-edge technology has gained importance achieving increasingly more acceptance for industrial applications. To the best of authors’ knowledge, there are currently no scientific work addressing the EBF3 fabrication of SMA. The present work addresses the first results on EBF3 of SMAs by studying NiTi alloys.<br/>