Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Fisslthaler, Evelin

  • Google
  • 7
  • 38
  • 19

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (7/7 displayed)

  • 2024Challenges and advances regarding LiVPO4: From HR-STEM & EELS to novel scanning diffraction techniquescitations
  • 20232D and 3D STEM Imaging and Spectroscopy: Applications and Perspectives in View of Novel STEM Infrastructurecitations
  • 2023Influence of growth temperature on the properties of aluminum nitride thin films prepared by magnetron sputter epitaxy14citations
  • 2023AlYN Thin Films with High Y Content: Microstructure and Performance5citations
  • 2022Challenges in the characterization of complex nanomaterials with analytical STEMcitations
  • 2021Spectroscopic STEM imaging in 2D and 3Dcitations
  • 2013TEM Sample Preparation of a Hard Metal by Semiautomatic Wedge Polishingcitations

Places of action

Chart of shared publication
Hanzu, Ilie
1 / 6 shared
Jodlbauer, Anna
1 / 2 shared
Simic, Nikola
2 / 5 shared
Knez, Daniel
4 / 48 shared
Letofsky-Papst, Ilse
1 / 17 shared
Oberaigner, Michael
3 / 8 shared
Haberfehlner, Georg
3 / 13 shared
Kothleitner, Gerald
3 / 35 shared
Mairhofer, Thomas
1 / 2 shared
Lammer, Judith
3 / 5 shared
Grogger, Werner
3 / 11 shared
Dienstleder, Martina
1 / 4 shared
Wewerka, Karin
1 / 3 shared
Yassine, Ali
1 / 4 shared
Straňák, Patrik
1 / 7 shared
Prescher, Mario
1 / 21 shared
Nair, Akash
1 / 4 shared
Ambacher, Oliver
1 / 40 shared
Sundarapandian, Balasubramanian
1 / 2 shared
Raghuwanshi, Mohit
1 / 5 shared
Kirste, Lutz
1 / 46 shared
Baeumler, Martina
1 / 3 shared
Yassine, Mohamed Fadi
1 / 2 shared
Pashchenko, Vladimir
1 / 2 shared
Strube, Jannik
1 / 1 shared
Moridi, Mohssen
1 / 2 shared
Risquez, Sarah
1 / 2 shared
Pilz, Julian
1 / 2 shared
Sinani, Taulant
1 / 1 shared
Bruckner, Gudrun
1 / 1 shared
Howell, Kaitlin
1 / 1 shared
Röbisch, Volker
1 / 1 shared
Solonenko, Dmytro
1 / 4 shared
Fammels, Jannick
1 / 1 shared
Hofer, Ferdinand
2 / 26 shared
Radlinger, Thomas
2 / 5 shared
Krisper, Robert
1 / 3 shared
Albu, Mihaela
1 / 11 shared
Chart of publication period
2024
2023
2022
2021
2013

Co-Authors (by relevance)

  • Hanzu, Ilie
  • Jodlbauer, Anna
  • Simic, Nikola
  • Knez, Daniel
  • Letofsky-Papst, Ilse
  • Oberaigner, Michael
  • Haberfehlner, Georg
  • Kothleitner, Gerald
  • Mairhofer, Thomas
  • Lammer, Judith
  • Grogger, Werner
  • Dienstleder, Martina
  • Wewerka, Karin
  • Yassine, Ali
  • Straňák, Patrik
  • Prescher, Mario
  • Nair, Akash
  • Ambacher, Oliver
  • Sundarapandian, Balasubramanian
  • Raghuwanshi, Mohit
  • Kirste, Lutz
  • Baeumler, Martina
  • Yassine, Mohamed Fadi
  • Pashchenko, Vladimir
  • Strube, Jannik
  • Moridi, Mohssen
  • Risquez, Sarah
  • Pilz, Julian
  • Sinani, Taulant
  • Bruckner, Gudrun
  • Howell, Kaitlin
  • Röbisch, Volker
  • Solonenko, Dmytro
  • Fammels, Jannick
  • Hofer, Ferdinand
  • Radlinger, Thomas
  • Krisper, Robert
  • Albu, Mihaela
OrganizationsLocationPeople

document

Challenges and advances regarding LiVPO4: From HR-STEM & EELS to novel scanning diffraction techniques

  • Hanzu, Ilie
  • Jodlbauer, Anna
  • Fisslthaler, Evelin
  • Simic, Nikola
  • Knez, Daniel
Abstract

Recent advances in electron microscopical techniques now enable valuable insights into ion<br/>transport chemical and crystallographic processes of in battery materials. Influences The<br/>influence of battery cycling on the local crystal behavior structure and chemistry was<br/>successfully shown on LiFePO4 cathodes at the atomic level, [1] using utilizing the electron<br/>dose efficient integrated Differential Phase Contrast (iDPC) Imaging in a scanning<br/>transmission electron microscope (STEM) (iDPC) [2], as well asin combination with Electron<br/>Energy Loss Spectroscopy (EELS) in combination withand Selected Area Electron Diffraction<br/>(SAED) [1,2]. For the more complex and way more beam sensitive, polycrystalline LiVPO4,<br/>which exhibits polycrystalline behavior with crystals in ranging in the size offrom 10 nm to<br/>100 nm, the usage application of these techniques is less straightforward. Orientation of<br/>individual phases is rather problematic due to the main challenges lie in the small crystal size<br/>and their rapid amorphization under electron beam illumination. We therefore employ 4DScanning<br/>Confocal Electron Diffraction (4D-SCED) [3] for analyzing local crystal phases in<br/>combination with High-Resolution and spectroscopic techniques. [3]. This technique is well<br/>suited even for very beam sensitive materials, combining both the signal-to-noise ratio of<br/>SAED with the high lateral resolution of conventional Nanobeam-Diffraction in the range of<br/>~1 nm while still retaining low local electron dose requirements. Combining 4D-SCED with<br/>zero-loss filtering allows for even better signal to noise ratio in k-space imaging. We further<br/>discuss the advantages of 4D-SCED regarding the possibility of real-space phase mapping<br/>as well as combination with other imaging techniques and show these advantages on triedand-<br/>tested materials such as LiFePO4.

Topics
  • impedance spectroscopy
  • phase
  • electron diffraction
  • laser emission spectroscopy
  • electron energy loss spectroscopy