People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Knez, Daniel
Graz University of Technology
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (48/48 displayed)
- 2024Nanoscale, surface-confined phase separation by electron beam induced oxidationcitations
- 2024Three-dimensional distribution of individual atoms in the channels of beryl
- 2024Three-dimensional distribution of individual atoms in the channels of berylcitations
- 2024Phase Transitions and Ion Transport in Lithium Iron Phosphate by Atomic‐Scale Analysis to Elucidate Insertion and Extraction Processes in Li‐Ion Batteriescitations
- 2024Challenges and advances regarding LiVPO4: From HR-STEM & EELS to novel scanning diffraction techniques
- 2024STEM exploration of 2DEG at TiO2/LaAlO3 interface
- 2024Gas-Phase Synthesis of Iron Silicide Nanostructures Using a Single-Source Precursorcitations
- 2024Pulsed Laser Deposition using high-power Nd:YAG laser source operating at its first harmonics
- 2024Atom by atom analysis of defect structures in doped STO
- 2023A Guideline to Mitigate Interfacial Degradation Processes in Solid‐State Batteries Caused by Cross Diffusioncitations
- 20232D and 3D STEM Imaging and Spectroscopy: Applications and Perspectives in View of Novel STEM Infrastructure
- 2023Visualizing cellulose chains with cryo scanning transmission electron microscopy
- 2023Phase analysis of (Li)FePO4 by selected area electron diffraction and integrated differential phase contrast imaging
- 2022Phase Analysis of (Li)FePO4 by Selected Area Electron Diffraction in Transmission Electron Microscopy
- 2022Oxygen-Driven Metal–Insulator Transition in SrNbO 3 Thin Films Probed by Infrared Spectroscopycitations
- 2022Oxygen-Driven Metal–Insulator Transition in SrNbO3 Thin Films Probed by Infrared Spectroscopycitations
- 2022Vanadium and Manganese Carbonyls as Precursors in Electron-Induced and Thermal Deposition Processes
- 2022Orbital mapping of the LaAlO3-TiO2 interface by STEM-EELS
- 2022Quantifying Ordering Phenomena at the Atomic Scale in Rare Earth Oxide Ceramics via EELS Elemental Mapping
- 2022In Situ Study of Nanoporosity Evolution during Dealloying AgAu and CoPd by Grazing-Incidence Small-Angle X-ray Scatteringcitations
- 2022In Situ Study of Nanoporosity Evolution during Dealloying AgAu and CoPd by Grazing-Incidence Small-Angle X-ray Scatteringcitations
- 2022Field induced oxygen vacancy migration in anatase thin films studied by in situ biasing TEM
- 2022Precursors for Direct-Write Nanofabrication with Electrons
- 2022Challenges in the characterization of complex nanomaterials with analytical STEM
- 2022Mixed-metal nanoparticlescitations
- 2022Focused Ion Beam vs Focused Electron Beam Deposition of Cobalt Silicide Nanostructures Using Single-Source Precursorscitations
- 2022A Lithium-Silicon Microbattery with Anode and Housing Directly Made from Semiconductor Grade Monocrystalline Sicitations
- 2021Post-processing paths for orbital mapping of rutile by STEM-EELS
- 2021Automatic indexing of two-dimensional patterns in reciprocal space
- 2021Pulsed laser deposition of oxide and metallic thin films by means of Nd:YAG laser source operating at its 1st harmonicscitations
- 2021The Impact of High-Tension on the Orbital Mapping of Rutile by STEM-EELS
- 2021Spectroscopic STEM imaging in 2D and 3D
- 2020Helium droplet assisted synthesis of plasmonic Ag@ZnO core@shell nanoparticlescitations
- 2020Tuning optical absorption of anatase thin lms across the visible/near-infrared spectral regioncitations
- 2020Study on Ca Segregation toward an Epitaxial Interface between Bismuth Ferrite and Strontium Titanatecitations
- 2020Ca segregation towards an in-plane compressive strain Bismuth Ferrite – Strontium Titanate interface
- 2020Unveiling Oxygen Vacancy Superstructures in Reduced Anatase Thin Filmscitations
- 2020Ultrashort XUV pulse absorption spectroscopy of partially oxidized cobalt nanoparticlescitations
- 2019Ultra-thin h-BN substrates for nanoscale plasmon spectroscopycitations
- 2019On the passivation of iron particles at the nanoscalecitations
- 2019The impact of swift electrons on the segregation of Ni-Au nanoalloyscitations
- 2019Effects of the Core Location on the Structural Stability of Ni-Au Core-Shell Nanoparticlescitations
- 2019Atomic Structure Analysis of a Second Order Ruddlesden-Popper Ferrite-a High Resolution STEM Study
- 2018Stability of Core-Shell Nanoparticles for Catalysis at Elevated Temperaturescitations
- 2017Microstructure evolution and mechanical properties of hot deformed Mg9Al1Zn samples containing a friction stir processed zonecitations
- 2017Thermally induced breakup of metallic nanowirescitations
- 2017Inclusions in Si whiskers grown by Ni metal induced lateral crystallizationcitations
- 2016Formation of bimetallic clusters in superfluid helium nanodroplets analysed by atomic resolution electron tomography
Places of action
Organizations | Location | People |
---|
document
Visualizing cellulose chains with cryo scanning transmission electron microscopy
Abstract
Cellulose is the most abundant biopolymer on earth and is found in the cell walls of most plants and some algae, but also occurs in bacteria, fungi and even some sea animals. Plant cellulose, in particular, has a wide range of applications as a renewable, biodegradable and non-toxic material in papers, textiles, packaging and medical products, to name a few. Cellulose in plants is organized in supramolecular structures where the basic structural element the cellulose microfibril (CMF). The supramolecular cellulose comprises of ordered periodic crystalline regions that can be liberated by acid hydrolysis into nanoparticles, namely the cellulose nanocrystals (CNC), with dimensions of 100-200 nm in length and a few nanometers in width. Despite its abundance in nature and its technological relevance, the structural details of cellulose still remain elusive and various structural models have been proposed in recent years [1].<br/>Transmission electron microscopy (TEM) under cryogenic conditions has proven to be a highly valuable technique for the structural analysis of such biomolecules. However, imaging cellulose at sufficiently high resolution has been challenging due to its very high susceptibility to electron beam damage, combined with the low contrast provided by its light constituents. These problems have been addressed in the past by applying contrast agents, staining with uranyl acetate or low voltage imaging [2]. While, by this, great progress has been made regarding the visualization of nanoscale cellulose features, atomic scale visualization still remains problematic [3].<br/>Here, we report on the visualization of sulfated cellulose chains by low-dose cryo high-resolution scanning TEM (STEM). To this end we exploit the high contrast provided by indvidual heavy ions in annular dark field (ADF) imaging for visualization of cellulose chains.<br/>For imaging a FEI Titan G2 STEM, operated at 300 kV, has been used. Samples were prepared by drop casting the CNCs, dispersed in water, on a TEM grid, which is covered by a 2-3 nm thick amorphous carbon film. During imaging the sample is kept at liquid nitrogen temperature.<br/>In the obtained ADF images (Figure 1) the individual atoms providing contrast can clearly be discerned and exhibit a regular, linear arrangement along the long axis of the CNCs. By comparing the micrographs with multislice simulations based on atomistic structural models, we obtain information about possible arrangements of the sulfate groups, linked to the position of carbon 6 sites in the glucose unit within single CNC chains. Exemplary, a possible structural configuration on the amorphous carbon substrate is depicted in Figure 1c with the corresponding ADF multislice simulation shown in (f).