People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Hofer, Ferdinand
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (26/26 displayed)
- 2024Three-dimensional distribution of individual atoms in the channels of beryl
- 2024Atom by atom analysis of defect structures in doped STO
- 2022Quantifying Ordering Phenomena at the Atomic Scale in Rare Earth Oxide Ceramics via EELS Elemental Mapping
- 2022A study on the correlation between micro and magnetic domain structure of Cu52Ni34Fe14 spinodal alloyscitations
- 2022Challenges in the characterization of complex nanomaterials with analytical STEM
- 2022Mixed-metal nanoparticlescitations
- 2021An In Situ Synchrotron Dilatometry and Atomistic Study of Martensite and Carbide Formation during Partitioning and Temperingcitations
- 2021Spectroscopic STEM imaging in 2D and 3D
- 2020Helium droplet assisted synthesis of plasmonic Ag@ZnO core@shell nanoparticlescitations
- 2020Ultrashort XUV pulse absorption spectroscopy of partially oxidized cobalt nanoparticlescitations
- 2019Ultra-thin h-BN substrates for nanoscale plasmon spectroscopycitations
- 2019On the passivation of iron particles at the nanoscalecitations
- 2019The impact of swift electrons on the segregation of Ni-Au nanoalloyscitations
- 2019Effects of the Core Location on the Structural Stability of Ni-Au Core-Shell Nanoparticlescitations
- 2019Structural characterization of poly-Si Films crystallized by Ni Metal Induced Lateral Crystallizationcitations
- 2018Stability of Core-Shell Nanoparticles for Catalysis at Elevated Temperaturescitations
- 2018How Dark Are Radial Breathing Modes in Plasmonic Nanodisks?citations
- 2017Thermally induced breakup of metallic nanowirescitations
- 2017Inclusions in Si whiskers grown by Ni metal induced lateral crystallizationcitations
- 2017How Dark Are Radial Breathing Modes in Plasmonic Nanodisks?citations
- 2016Formation of bimetallic clusters in superfluid helium nanodroplets analysed by atomic resolution electron tomography
- 2014Order vs. disorder — a huge increase in ionic conductivity of nanocrystalline LiAlO2 embedded in an amorphous-like matrix of lithium aluminatecitations
- 2013Bismuth sulphide–polymer nanocomposites from a highly soluble bismuth xanthate precursorcitations
- 2013Influence of the bridging atom in fluorene analogue low‐bandgap polymers on photophysical and morphological properties of copper indium sulfide/polymer nanocomposite solar cellscitations
- 2012Comprehensive Investigation of Silver Nanoparticle/Aluminum Electrodes for Copper Indium Sulfide/Polymer Hybrid Solar Cellscitations
- 2012Application of elemental microanalysis to elucidate the role of spherites in the digestive gland of the helicid snail Chilostoma lefeburiana
Places of action
Organizations | Location | People |
---|
document
Spectroscopic STEM imaging in 2D and 3D
Abstract
Atomic-resolution imaging with a spherical aberration-corrected scanning transmission electron microscope (STEM) is now widely used for the study of interesting, complex material systems. This is owed both to the flexibility in detecting the electrons scattered off from matter, but also to the improved efficiency in collecting spectroscopic signals. Different variants of bright and dark-field imaging techniques provide unprecedented structural insights and electron energy-loss (EELS) or X-ray (EDXS) spectroscopy, have enabled elemental-specific imaging at that scale, while allowing for supplementary electronic and chemical information. The simultaneous collection of all these signals (“multi-modal STEM”) at various observation angles even, defining the technique of STEM-EELS/EDXS tomography, has given unprecedented insight into the 2D and 3D structural and physico-chemical material make-up.<br/>Fundamental research in physics, chemistry and materials science is currently strongly empowered by electron microscopy - to name a few topics: Understanding transport properties (such as charge localization, band versus ballistic transport or the interplay between lattice strain, band structure and charge transport…). Fundamental aspects of spintronics (such as the interplay of structure, chemistry and defects and their role in complex oxides, doped semiconductor materials and other nanostructures,…). Understanding the physics fundamentals of photonic materials (such as excitonic or polaronic coupling, photonic density of states 3D reconstructions, …). In materials science: Improving and understanding defect-engineering (such as the role of dislocations, and remedies to improve mobilities in electro-active materials ,…) or the understanding of phase formations and transitions (like precipitation formation in metals and alloys, role of coatings and additives of precursor powders used in 3D printed materials…).<br/>Overall, the STEM represents a quantitative instrument, which is capable of providing numerical data on some key properties of matter. The talk aims to give an overview to spectroscopic imaging in 2D and 3D, by showcasing some highly topical research questions on selected material systems.