People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Kothleitner, Gerald
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (35/35 displayed)
- 2024Three-dimensional distribution of individual atoms in the channels of beryl
- 2024Phase Transitions and Ion Transport in Lithium Iron Phosphate by Atomic‐Scale Analysis to Elucidate Insertion and Extraction Processes in Li‐Ion Batteriescitations
- 2024STEM exploration of 2DEG at TiO2/LaAlO3 interface
- 2024Atom by atom analysis of defect structures in doped STO
- 2023A Guideline to Mitigate Interfacial Degradation Processes in Solid‐State Batteries Caused by Cross Diffusioncitations
- 20232D and 3D STEM Imaging and Spectroscopy: Applications and Perspectives in View of Novel STEM Infrastructure
- 2023Visualizing cellulose chains with cryo scanning transmission electron microscopy
- 2023Large mechanical properties enhancement in ceramics through vacancy-mediated unit cell disturbancecitations
- 2023Spectral Tuning of Plasmonic Activity in 3D Nanostructures via High-Precision Nano-Printingcitations
- 2023The challenge with high permittivity acceptors in organic solar cells: a case study with Y-series derivativescitations
- 2023Pillar Growth by Focused Electron Beam-Induced Deposition Using a Bimetallic Precursor as Model Systemcitations
- 2022Orbital mapping of the LaAlO3-TiO2 interface by STEM-EELS
- 2022Quantifying Ordering Phenomena at the Atomic Scale in Rare Earth Oxide Ceramics via EELS Elemental Mapping
- 2022Ca Solubility in a BiFeO3-Based System with a Secondary Bi2O3 Phase on a Nanoscale.
- 2022A study on the correlation between micro and magnetic domain structure of Cu52Ni34Fe14 spinodal alloyscitations
- 2022Field induced oxygen vacancy migration in anatase thin films studied by in situ biasing TEM
- 2022Challenges in the characterization of complex nanomaterials with analytical STEM
- 2021Post-processing paths for orbital mapping of rutile by STEM-EELS
- 2021Dislocations in ceramic electrolytes for solid-state Li batteriescitations
- 2021An In Situ Synchrotron Dilatometry and Atomistic Study of Martensite and Carbide Formation during Partitioning and Temperingcitations
- 2021The Impact of High-Tension on the Orbital Mapping of Rutile by STEM-EELS
- 2021Spectroscopic STEM imaging in 2D and 3D
- 2021High-Resolution Microstructure Characterization of Additively Manufactured X5CrNiCuNb17-4 Maraging Steel during Ex and In Situ Thermal Treatmentcitations
- 2020Study on Ca Segregation toward an Epitaxial Interface between Bismuth Ferrite and Strontium Titanatecitations
- 2020Microstructure Investigations of Powders and Additive Manufactured Partscitations
- 2020Ca segregation towards an in-plane compressive strain Bismuth Ferrite – Strontium Titanate interface
- 2019Ultra-thin h-BN substrates for nanoscale plasmon spectroscopycitations
- 2019The impact of swift electrons on the segregation of Ni-Au nanoalloyscitations
- 2019Atomic Structure Analysis of a Second Order Ruddlesden-Popper Ferrite-a High Resolution STEM Study
- 2019Analyzing the Nanogranularity of Focused-Electron-Beam-Induced-Deposited Materials by Electron Tomographycitations
- 2016Formation of bimetallic clusters in superfluid helium nanodroplets analysed by atomic resolution electron tomography
- 2013Tuning the magnetic properties of metal oxide nanocrystal heterostructures by cation exchangecitations
- 2012Direct electroplating of copper on tantalum from ionic liquids in high vacuum: Origin of the tantalum oxide layercitations
- 2012Direct-on-barrier copper electroplating on ruthenium from the ionic liquid 1-ethyl-3-methylimidazolium dicyanamidecitations
- 2011The influence of boron on the microstructure of a 9 wt% Cr ferritic steelcitations
Places of action
Organizations | Location | People |
---|
document
Field induced oxygen vacancy migration in anatase thin films studied by in situ biasing TEM
Abstract
Titanium dioxide TiO2 is the most prominent representative within the class of transition metaloxides and is interesting for a large number of applications due to its optical properties, memristivebehaviour, catalytic activity and electrochemical stability. Among the different polymorphs of TiO2,anatase is the preferred configuration for many applications. Even though stoichiometric anataseis a wide band gap semiconductor with an indirect optical band gap of 3.2 eV, its electronic andoptical properties are largely determined by the presence of excess electrons, which can beinduced by dopants or intrinsic defects such as oxygen vacancies (VO). VO are inherently presentin anatase and act as donors in the n-type semiconductor. Their presence induces localizedelectronic states within the band gap, correlated to the formation of Ti3+ ions [1]. Recently we wereable to show that VO form periodic oxygen concentration variations along specific crystallographicdirections without breaking the continuity of the anatase structure, contradicting the previouslyproposed formation of shear planes [2].Related to the formation of such VO superstructures is the question about the origin of thememristive behaviour of anatase. There is theoretical evidence for the mobility of VO along the[100] and [010] crystallographic direction of the crystal in an electric field [3]. The structuralimplications of such field induced VO diffusion have however not yet been studied.Here, we present an in situ biasing TEM study of the atomic structure of oxygen deficient anatasethin films, epitaxially grown on LaAlO3 substrates by Pulsed Laser Deposition (PLD). The TEMmicrographs in Figure 1 depict such a film in its initial state (a) and after increasing the voltage to3.5 V over 30 min (b). The periodic contrast variations typical for the presence of vacancysuperstructures in TiO2 films are already visible in the initial oxygen deficient state (Fig. 1a). Afterapplying an E-field along the [100] orientation they are, however, found to significantly increase.This finding points towards an increase of VO which preserve the overall structural arrangementand the relative distances between the defective planes of the modulated structure in the observedregion.Our experimental approach enables us to apply an E-field parallel to the in-plane direction of thefilm by using a standard MEMS-based in situ biasing platform (DENS Solution Lightning), whichallows to shed light on the underlying mechanisms in electromigration and electroforming in TiO2thin films.